Skip to main content
Erschienen in: Computational Mechanics 5/2019

18.09.2018 | Original Paper

Heat capacity and thermal expansion of metal crystalline materials based on dynamic thermal vibration

verfasst von: Jieqiong Zhang, Junzhi Cui, Zihao Yang, Yifan Yu

Erschienen in: Computational Mechanics | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel approach based on dynamic thermal vibration is proposed to calculate the heat capacity and thermal expansion coefficient (TEC) for metal crystalline materials from 0 K to the melting point. The motion of metal atomic clusters is decomposed into structural deformation and thermal vibration. Then thermal vibration equations are established by the fourth-order Taylor expansion of Hamiltonian at the transient structural deformation position \({\bar{\mathbf {x}}}\). As a result, the thermal vibration frequencies dynamically change with the structural deformation positions and temperatures. A parameter \({\bar{\delta }} ({\bar{\mathbf {x}}}, T)\) is newly introduced to illustrate how the thermal vibration frequencies vary with the temperature T. Besides, the modified temperature-dependent Grüneisen parameter \({\bar{\gamma }} ({\bar{\mathbf {x}}}, T)\) is given. Finally, the formulae of heat capacity and TEC for metal crystalline materials are derived from the dynamic thermal vibration frequencies and \({\bar{\delta }} ({\bar{\mathbf {x}}}, T)\) as well as \({\bar{\gamma }} ({\bar{\mathbf {x}}}, T)\). The numerical results of heat capacity and TEC for metals Cu, Al, Au, Ag, Ni, Pd, Pt and Pb show a temperature dependence and agree well with the experimental data from 0 K to the melting point. This work suggests an efficient approach to calculate thermodynamic properties of metal materials for a wide range of temperatures, up to the melting point.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Born M, Huang K (1955) Dynamical theory of crystal lattices. Oxford and Clarendon Press, LondonCrossRefMATH Born M, Huang K (1955) Dynamical theory of crystal lattices. Oxford and Clarendon Press, LondonCrossRefMATH
2.
Zurück zum Zitat Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, New YorkMATH Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, New YorkMATH
3.
Zurück zum Zitat Wallace DC (2002) Statistical physics of crystals and liquids: a guide to highly accurate equations of state. World Scientific, SingaporeMATH Wallace DC (2002) Statistical physics of crystals and liquids: a guide to highly accurate equations of state. World Scientific, SingaporeMATH
4.
Zurück zum Zitat Krishnan RS, Srinivasan R, Devanarayanan S (2013) Thermal expansion of crystals: international series in the science of the solid state, vol 12. Pergamom Press Ltd, Oxford Krishnan RS, Srinivasan R, Devanarayanan S (2013) Thermal expansion of crystals: international series in the science of the solid state, vol 12. Pergamom Press Ltd, Oxford
5.
Zurück zum Zitat Barron THK, White GK (2012) Heat capacity and thermal expansion at low temperatures. Springer, New York Barron THK, White GK (2012) Heat capacity and thermal expansion at low temperatures. Springer, New York
6.
Zurück zum Zitat van de Walle A, Ceder G (2002) The effect of lattice vibrations on substitutional alloy thermodynamics. Rev Mod Phys 74:11–45CrossRef van de Walle A, Ceder G (2002) The effect of lattice vibrations on substitutional alloy thermodynamics. Rev Mod Phys 74:11–45CrossRef
7.
Zurück zum Zitat Fultz B (2010) Vibrational thermodynamics of materials. Prog Mater Sci 55(4):247–352CrossRef Fultz B (2010) Vibrational thermodynamics of materials. Prog Mater Sci 55(4):247–352CrossRef
8.
Zurück zum Zitat Moruzzi VL, Janak JF, Schwarz K (1988) Calculated thermal properties of metals. Phys Rev B 37:790–799CrossRef Moruzzi VL, Janak JF, Schwarz K (1988) Calculated thermal properties of metals. Phys Rev B 37:790–799CrossRef
9.
Zurück zum Zitat Gan CK, Soh JR, Liu Y (2015) Large anharmonic effect and thermal expansion anisotropy of metal chalcogenides: the case of antimony sulfide. Phys Rev B 92:235202CrossRef Gan CK, Soh JR, Liu Y (2015) Large anharmonic effect and thermal expansion anisotropy of metal chalcogenides: the case of antimony sulfide. Phys Rev B 92:235202CrossRef
10.
Zurück zum Zitat Glensk A, Grabowski B, Hickel T, Neugebauer J (2015) Understanding anharmonicity in fcc materials: from its origin to ab initio strategies beyond the quasiharmonic approximation. Phys Rev Lett 114:195901CrossRef Glensk A, Grabowski B, Hickel T, Neugebauer J (2015) Understanding anharmonicity in fcc materials: from its origin to ab initio strategies beyond the quasiharmonic approximation. Phys Rev Lett 114:195901CrossRef
11.
Zurück zum Zitat Grabowski B, Ismer L, Hickel T, Neugebauer J (2009) Ab initio up to the melting point: anharmonicity and vacancies in aluminum. Phys Rev B 79:134106CrossRef Grabowski B, Ismer L, Hickel T, Neugebauer J (2009) Ab initio up to the melting point: anharmonicity and vacancies in aluminum. Phys Rev B 79:134106CrossRef
12.
Zurück zum Zitat Hellman O, Abrikosov IA, Simak SI (2011) Lattice dynamics of anharmonic solids from first principles. Phys Rev B 84:180301CrossRef Hellman O, Abrikosov IA, Simak SI (2011) Lattice dynamics of anharmonic solids from first principles. Phys Rev B 84:180301CrossRef
13.
Zurück zum Zitat Monserrat B, Drummond ND, Needs RJ (2013) Anharmonic vibrational properties in periodic systems: energy, electron–phonon coupling, and stress. Phys Rev B 87:144302CrossRef Monserrat B, Drummond ND, Needs RJ (2013) Anharmonic vibrational properties in periodic systems: energy, electron–phonon coupling, and stress. Phys Rev B 87:144302CrossRef
14.
Zurück zum Zitat Bansal D, Aref A, Dargush G, Delaire O (2016) Modeling non-harmonic behavior of materials from experimental inelastic neutron scattering and thermal expansion measurements. J Phys Condens Matter 28(38):385201CrossRef Bansal D, Aref A, Dargush G, Delaire O (2016) Modeling non-harmonic behavior of materials from experimental inelastic neutron scattering and thermal expansion measurements. J Phys Condens Matter 28(38):385201CrossRef
15.
Zurück zum Zitat Narasimhan S, De Gironcoli S (2002) Ab initio calculation of the thermal properties of Cu: performance of the LDA and GGA. Phys Rev B 65(6):064302CrossRef Narasimhan S, De Gironcoli S (2002) Ab initio calculation of the thermal properties of Cu: performance of the LDA and GGA. Phys Rev B 65(6):064302CrossRef
16.
Zurück zum Zitat Mounet N, Marzari N (2005) First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys Rev B 71(20):205214CrossRef Mounet N, Marzari N (2005) First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys Rev B 71(20):205214CrossRef
17.
Zurück zum Zitat Yun Y, Legut D, Oppeneer PM (2012) Phonon spectrum, thermal expansion and heat capacity of UO\(_{2}\) from first-principles. J Nucl Mater 426(1):109–114CrossRef Yun Y, Legut D, Oppeneer PM (2012) Phonon spectrum, thermal expansion and heat capacity of UO\(_{2}\) from first-principles. J Nucl Mater 426(1):109–114CrossRef
18.
Zurück zum Zitat Allen PB (2015) Anharmonic phonon quasiparticle theory of zero-point and thermal shifts in insulators: heat capacity, bulk modulus, and thermal expansion. Phys Rev B 92:064106CrossRef Allen PB (2015) Anharmonic phonon quasiparticle theory of zero-point and thermal shifts in insulators: heat capacity, bulk modulus, and thermal expansion. Phys Rev B 92:064106CrossRef
19.
Zurück zum Zitat Liu ZJ, Song T, Sun XW, Ma Q, Wang T, Guo Y (2017) Thermal expansion, heat capacity and Grneisen parameter of iridium phosphide Ir\(_2\)P from quasi-harmonic Debye mode. Solid State Commun 253:19–23CrossRef Liu ZJ, Song T, Sun XW, Ma Q, Wang T, Guo Y (2017) Thermal expansion, heat capacity and Grneisen parameter of iridium phosphide Ir\(_2\)P from quasi-harmonic Debye mode. Solid State Commun 253:19–23CrossRef
20.
Zurück zum Zitat Li H, Cui J, Li B (2015) A thermo-mechnical coupling atom–continuum couple model and it algorithm. Appl Math Mech Engl 36(4):343–351 Li H, Cui J, Li B (2015) A thermo-mechnical coupling atom–continuum couple model and it algorithm. Appl Math Mech Engl 36(4):343–351
21.
Zurück zum Zitat Xiang M, Cui J, Li B, Tian X (2012) Atom-continuum coupled model for thermo-mechanical behavior of materials in micro–nano scales. Sci China Phys Mech 55(6):1125–1137CrossRef Xiang M, Cui J, Li B, Tian X (2012) Atom-continuum coupled model for thermo-mechanical behavior of materials in micro–nano scales. Sci China Phys Mech 55(6):1125–1137CrossRef
22.
Zurück zum Zitat Li B, Cui J, Tian X, Xingang Y, Xiang M (2014) The calculation of mechanical behavior for metallic devices at nano-scale based on atomic–continuum coupled model. Comput Mater Sci 94(11):73–84CrossRef Li B, Cui J, Tian X, Xingang Y, Xiang M (2014) The calculation of mechanical behavior for metallic devices at nano-scale based on atomic–continuum coupled model. Comput Mater Sci 94(11):73–84CrossRef
23.
Zurück zum Zitat To AC, Liu WK, Kopacz A (2008) A finite temperature continuum theory based on interatomic potential in crystalline solids. Comput Mech 42(4):531–541CrossRefMATH To AC, Liu WK, Kopacz A (2008) A finite temperature continuum theory based on interatomic potential in crystalline solids. Comput Mech 42(4):531–541CrossRefMATH
24.
Zurück zum Zitat Gallavotti G (2013) Statistical mechanics. Springer, New YorkMATH Gallavotti G (2013) Statistical mechanics. Springer, New YorkMATH
25.
Zurück zum Zitat Arnol’d Vladimir Igorevich (2013) Mathematical methods of classical mechanics. Springer, New YorkMATH Arnol’d Vladimir Igorevich (2013) Mathematical methods of classical mechanics. Springer, New YorkMATH
26.
Zurück zum Zitat Kovacic I, Brennan MJ (2011) The Duffing equation: nonlinear oscillators and their behaviour. Wiley, New YorkCrossRefMATH Kovacic I, Brennan MJ (2011) The Duffing equation: nonlinear oscillators and their behaviour. Wiley, New YorkCrossRefMATH
27.
Zurück zum Zitat Liu S, Zuntao F, Liu S, Zhao Q (2001) Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys Lett A 289(1):69–74MathSciNetCrossRefMATH Liu S, Zuntao F, Liu S, Zhao Q (2001) Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys Lett A 289(1):69–74MathSciNetCrossRefMATH
28.
Zurück zum Zitat Parkes EJ, Duffy BR, Abbott PC (2002) The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations. Phys Lett A 295(56):280–286MathSciNetCrossRefMATH Parkes EJ, Duffy BR, Abbott PC (2002) The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations. Phys Lett A 295(56):280–286MathSciNetCrossRefMATH
29.
Zurück zum Zitat Mishin Y, Mehl MJ, Papaconstantopoulos DA, Voter AF, Kress JD (2001) Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys Rev B 63:224106CrossRef Mishin Y, Mehl MJ, Papaconstantopoulos DA, Voter AF, Kress JD (2001) Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys Rev B 63:224106CrossRef
30.
Zurück zum Zitat Lee BJ, Shim JH, Baskes MI (2003) Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method. Phys Rev B 68:144112CrossRef Lee BJ, Shim JH, Baskes MI (2003) Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method. Phys Rev B 68:144112CrossRef
31.
Zurück zum Zitat Foiles SM, Baskes MI, Daw MS (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33:7983–7991CrossRef Foiles SM, Baskes MI, Daw MS (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33:7983–7991CrossRef
32.
Zurück zum Zitat Williams PL, Mishin Y, Hamilton JC (2006) An embedded-atom potential for the Cu–Ag system. Model Simul Mater Sci 14(5):817CrossRef Williams PL, Mishin Y, Hamilton JC (2006) An embedded-atom potential for the Cu–Ag system. Model Simul Mater Sci 14(5):817CrossRef
33.
Zurück zum Zitat Gray DE (1972) American institute of physics handbook. McGraw-Hill, New YorkMATH Gray DE (1972) American institute of physics handbook. McGraw-Hill, New YorkMATH
34.
Zurück zum Zitat Touloukian YS, Kirby RK, Taylor RE, Desai PD (1975) Thermal expansion: metallic elements and alloys, vol 12. Springer, New YorkCrossRef Touloukian YS, Kirby RK, Taylor RE, Desai PD (1975) Thermal expansion: metallic elements and alloys, vol 12. Springer, New YorkCrossRef
Metadaten
Titel
Heat capacity and thermal expansion of metal crystalline materials based on dynamic thermal vibration
verfasst von
Jieqiong Zhang
Junzhi Cui
Zihao Yang
Yifan Yu
Publikationsdatum
18.09.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 5/2019
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-018-1632-3

Weitere Artikel der Ausgabe 5/2019

Computational Mechanics 5/2019 Zur Ausgabe

Neuer Inhalt