Skip to main content

2017 | OriginalPaper | Buchkapitel

21. Heat Integration Across Plants Considering Distance Factor

verfasst von : Yufei Wang, Xiao Feng

Erschienen in: Advances in Energy Systems Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Heat integration across plants is an extension of conventional heat integration in a single plant for further improving energy efficiency. This chapter addresses the application of both Pinch Analysis and Mathematical Programming on solving heat integration problems across plants. For heat integration across plants, the required pipelines between plants is much longer than heat integration within a single plant, so more attentions must be paid on distance factor as it incurs more expense. A number of factors can affect the final design of pipelines between plants, for example, direct and indirect heat integration, the connection patterns between plants, the selection of intermediate fluid, etc. In this chapter, three connection patterns (series, split, parallel) for interconnectivity of individual plants in an area are presented. Each connection pattern has different performance on energy saving and pipeline length. To determine the energy target for the three connection patterns, a graphical methodology is presented. In addition, Mathematical Programming is used to determine the optimal design considering both direct and indirect heat integration. Parameters of intermediate fluid can be also optimized if indirect heat integration is applied. Some case studies are illustrated to demonstrate the capabilities of the presented models and graphic tool.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Asante, N. D. K., & Zhu, X. X. (1996). An automated approach for heat exchanger network retrofit featuring minimal topology modifications. Computers & Chemical Engineering, 20, S7–S12.CrossRef Asante, N. D. K., & Zhu, X. X. (1996). An automated approach for heat exchanger network retrofit featuring minimal topology modifications. Computers & Chemical Engineering, 20, S7–S12.CrossRef
Zurück zum Zitat Bagajewicz, M., & Rodera, H. (2000). Energy savings in the total site heat integration across many plants. Computers & Chemical Engineering, 24, 1237–1242.CrossRef Bagajewicz, M., & Rodera, H. (2000). Energy savings in the total site heat integration across many plants. Computers & Chemical Engineering, 24, 1237–1242.CrossRef
Zurück zum Zitat Chang, C., Wang, Y., & Feng, X. (2015). Indirect heat integration across plants using hot water circles. Chinese Journal of Chemical Engineering, 23, 992–997.CrossRef Chang, C., Wang, Y., & Feng, X. (2015). Indirect heat integration across plants using hot water circles. Chinese Journal of Chemical Engineering, 23, 992–997.CrossRef
Zurück zum Zitat Chew, K. H., Klemeš, J. J., WAN ALWI, S. R., & ABDUL MANAN, Z. (2013). Industrial implementation issues of total site heat integration. Applied Thermal Engineering, 61, 17–25.CrossRef Chew, K. H., Klemeš, J. J., WAN ALWI, S. R., & ABDUL MANAN, Z. (2013). Industrial implementation issues of total site heat integration. Applied Thermal Engineering, 61, 17–25.CrossRef
Zurück zum Zitat Dhole, V. R., & Linnhoff, B. (1993). Total site targets for fuel, co-generation, emissions, and cooling. Computers & Chemical Engineering, 17((supp.1)), S101–S109.CrossRef Dhole, V. R., & Linnhoff, B. (1993). Total site targets for fuel, co-generation, emissions, and cooling. Computers & Chemical Engineering, 17((supp.1)), S101–S109.CrossRef
Zurück zum Zitat Hackl, R., Andersson, E., & Harvey, S. (2011). Targeting for energy efficiency and improved energy collaboration between different companies using total site analysis (TSA). Energy, 36, 4609–4615.CrossRef Hackl, R., Andersson, E., & Harvey, S. (2011). Targeting for energy efficiency and improved energy collaboration between different companies using total site analysis (TSA). Energy, 36, 4609–4615.CrossRef
Zurück zum Zitat Hammond, G. P., & Norman, J. B. (2014). Heat recovery opportunities in UK industry. Applied Energy, 116, 387–397.CrossRef Hammond, G. P., & Norman, J. B. (2014). Heat recovery opportunities in UK industry. Applied Energy, 116, 387–397.CrossRef
Zurück zum Zitat HIP Lito-Valencia, B. J., RUBIO-CASTRO, E., PONCE-ORTEGA, J. M., SERNA-GONZ LEZ, M., N POLES-RIVERA, F., & EL-HALWAGI, M. M. (2014). Optimal design of inter-plant waste energy integration. Applied Thermal Engineering, 62, 633–652.CrossRef HIP Lito-Valencia, B. J., RUBIO-CASTRO, E., PONCE-ORTEGA, J. M., SERNA-GONZ LEZ, M., N POLES-RIVERA, F., & EL-HALWAGI, M. M. (2014). Optimal design of inter-plant waste energy integration. Applied Thermal Engineering, 62, 633–652.CrossRef
Zurück zum Zitat Hu, C. W., & Ahmad, S. (1994). Total site heat integration using the utility system. Computers & Chemical Engineering, 18, 729–742.CrossRef Hu, C. W., & Ahmad, S. (1994). Total site heat integration using the utility system. Computers & Chemical Engineering, 18, 729–742.CrossRef
Zurück zum Zitat Jiang, D., & Chang, C.-T. (2013). A new approach to generate flexible multiperiod heat exchanger network designs with timesharing mechanisms. Industrial and Engineering Chemistry Research, 52, 3794–3804. Jiang, D., & Chang, C.-T. (2013). A new approach to generate flexible multiperiod heat exchanger network designs with timesharing mechanisms. Industrial and Engineering Chemistry Research, 52, 3794–3804.
Zurück zum Zitat Kapil, A., Bulatov, I., Smith, R., & Kim, J.-K. (2012). Site-wide low-grade heat recovery with a new cogeneration targeting method. Chemical Engineering Research and Design, 90, 677–689.CrossRef Kapil, A., Bulatov, I., Smith, R., & Kim, J.-K. (2012). Site-wide low-grade heat recovery with a new cogeneration targeting method. Chemical Engineering Research and Design, 90, 677–689.CrossRef
Zurück zum Zitat Klemeš, J., Dhole, V. R., Raissi, K., Perry, S. J., & Puigjaner, L. (1997). Targeting and design methodology for reduction of fuel, power and CO2 on total sites. Applied Thermal Engineering, 17, 993–1003.CrossRef Klemeš, J., Dhole, V. R., Raissi, K., Perry, S. J., & Puigjaner, L. (1997). Targeting and design methodology for reduction of fuel, power and CO2 on total sites. Applied Thermal Engineering, 17, 993–1003.CrossRef
Zurück zum Zitat Kovač Kralj, A., GLAVIČ, P., & KRAVANJA, Z. (2005). Heat integration between processes: Integrated structure and MINLP model. Computers & Chemical Engineering, 29, 1699–1711.CrossRef Kovač Kralj, A., GLAVIČ, P., & KRAVANJA, Z. (2005). Heat integration between processes: Integrated structure and MINLP model. Computers & Chemical Engineering, 29, 1699–1711.CrossRef
Zurück zum Zitat Linnhoff, B., & Hindmarsh, E. (1983). The pinch design method for heat exchanger networks. Chemical Engineering Science, 38, 745–763.CrossRef Linnhoff, B., & Hindmarsh, E. (1983). The pinch design method for heat exchanger networks. Chemical Engineering Science, 38, 745–763.CrossRef
Zurück zum Zitat Matsuda, K., Hirochi, Y., Tatsumi, H., & Shire, T. (2009). Applying heat integration total site based pinch technology to a large industrial area in Japan to further improve performance of highly efficient process plants. Energy, 34, 1687–1692.CrossRef Matsuda, K., Hirochi, Y., Tatsumi, H., & Shire, T. (2009). Applying heat integration total site based pinch technology to a large industrial area in Japan to further improve performance of highly efficient process plants. Energy, 34, 1687–1692.CrossRef
Zurück zum Zitat Rodera, H., & Bagajewicz, M. J. (1999). Targeting procedures for energy savings by heat integration across plants. AIChE Journal, 45, 1721–1742.CrossRef Rodera, H., & Bagajewicz, M. J. (1999). Targeting procedures for energy savings by heat integration across plants. AIChE Journal, 45, 1721–1742.CrossRef
Zurück zum Zitat Rodera, H., & Bagajewicz, M. J. (2001). Multipurpose heat-exchanger networks for heat integration across plants. Industrial and Engineering Chemistry Research, 40, 5585–5603.CrossRef Rodera, H., & Bagajewicz, M. J. (2001). Multipurpose heat-exchanger networks for heat integration across plants. Industrial and Engineering Chemistry Research, 40, 5585–5603.CrossRef
Zurück zum Zitat Stijepovic, M. Z., & Linke, P. (2011). Optimal waste heat recovery and reuse in industrial zones. Energy, 36, 4019–4031. Stijepovic, M. Z., & Linke, P. (2011). Optimal waste heat recovery and reuse in industrial zones. Energy, 36, 4019–4031.
Zurück zum Zitat Suaysompol, K., & Wood, R. M. (1993). Estimation of the installed cost of heat exchanger networks. International Journal of Production Economics, 29, 303–312.CrossRef Suaysompol, K., & Wood, R. M. (1993). Estimation of the installed cost of heat exchanger networks. International Journal of Production Economics, 29, 303–312.CrossRef
Zurück zum Zitat Wang, Y., Chang, C., & Feng, X. (2015). A systematic framework for multi-plants Heat Integration combining direct and indirect heat integration methods. Energy, 90(Part 1), 56–67.CrossRef Wang, Y., Chang, C., & Feng, X. (2015). A systematic framework for multi-plants Heat Integration combining direct and indirect heat integration methods. Energy, 90(Part 1), 56–67.CrossRef
Zurück zum Zitat Wang, Y., Feng, X., & Chu, K. H. (2014). Trade-off between energy and distance related costs for different connection patterns in heat integration across plants. Applied Thermal Engineering, 70, 857–866.CrossRef Wang, Y., Feng, X., & Chu, K. H. (2014). Trade-off between energy and distance related costs for different connection patterns in heat integration across plants. Applied Thermal Engineering, 70, 857–866.CrossRef
Zurück zum Zitat Yee, T. F., & Grossmann, I. E. (1990). Simultaneous optimization models for heat integration–II. Heat exchanger network synthesis. Computers & Chemical Engineering, 14, 1165–1184.CrossRef Yee, T. F., & Grossmann, I. E. (1990). Simultaneous optimization models for heat integration–II. Heat exchanger network synthesis. Computers & Chemical Engineering, 14, 1165–1184.CrossRef
Metadaten
Titel
Heat Integration Across Plants Considering Distance Factor
verfasst von
Yufei Wang
Xiao Feng
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-42803-1_21