Skip to main content

2017 | OriginalPaper | Buchkapitel

5. Heat Transfer Characteristics of Near-Critical Microchannel Flows

verfasst von : Lin Chen

Erschienen in: Microchannel Flow Dynamics and Heat Transfer of Near-Critical Fluid

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In near-critical fluid, the unique feature is the coupling of convection dynamics and the heat transfer process (Zappoli et al. Heat transfer and related effects in supercritical fluids. Springer, London, 2015 [1]; Amiroudine and Zappoli Piston effect induced thermal oscillations at the Rayleigh-Benard threshold in supercritical 3He 90:105303, 2003 [2]; Carles A brief review of the thermophysical properties of supercritical fluids 53:2–11, 2010 [3], Chen et al. Numerical simulation of near-critical fluid convective flow mixing in microchannels 97:67–80, 2013 [4]). It is very special for the findings of convective structure and heat transfer enhancement in novel near-critical systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zappoli B, Beysens D, Garrabos Y (2015) Heat transfer and related effects in supercritical fluids. Springer, New York, LondonCrossRefMATH Zappoli B, Beysens D, Garrabos Y (2015) Heat transfer and related effects in supercritical fluids. Springer, New York, LondonCrossRefMATH
2.
Zurück zum Zitat Amiroudine S, Zappoli B (2003) Piston effect induced thermal oscillations at the Rayleigh-Benard threshold in supercritical 3He. Phys Rev Lett 90:105303CrossRef Amiroudine S, Zappoli B (2003) Piston effect induced thermal oscillations at the Rayleigh-Benard threshold in supercritical 3He. Phys Rev Lett 90:105303CrossRef
3.
Zurück zum Zitat Carles P (2010) A brief review of the thermophysical properties of supercritical fluids. J Supercrit Fluids 53:2–11CrossRef Carles P (2010) A brief review of the thermophysical properties of supercritical fluids. J Supercrit Fluids 53:2–11CrossRef
4.
Zurück zum Zitat Chen L, Zhang XR, Okajima J, Maruyama S (2013) Numerical simulation of near-critical fluid convective flow mixing in microchannels. Chem Eng Sci 97:67–80CrossRef Chen L, Zhang XR, Okajima J, Maruyama S (2013) Numerical simulation of near-critical fluid convective flow mixing in microchannels. Chem Eng Sci 97:67–80CrossRef
5.
Zurück zum Zitat Zappoli B (2003) Near-critical fluid hydrodynamics. Comptes Rendus Mecanique 331:713–726CrossRefMATH Zappoli B (2003) Near-critical fluid hydrodynamics. Comptes Rendus Mecanique 331:713–726CrossRefMATH
6.
Zurück zum Zitat Miura Y, Yoshihara S, Ohnishi M, Honda K, Matsumoto M, Kawai J, Ishikawa M, Kobayashi H, Onuki A (2006) High-speed observation of the piston effect near the gas-liquid critical point. Phys Rev E 74:010101 (R) Miura Y, Yoshihara S, Ohnishi M, Honda K, Matsumoto M, Kawai J, Ishikawa M, Kobayashi H, Onuki A (2006) High-speed observation of the piston effect near the gas-liquid critical point. Phys Rev E 74:010101 (R)
7.
Zurück zum Zitat Jounet A, Zappoli B, Mojtabi A (2000) Rapid thermal relaxation in near-critical fluids and critical speeding up: discrepancies caused by boundary effects. Phys Rev Lett 84:3224–3228CrossRef Jounet A, Zappoli B, Mojtabi A (2000) Rapid thermal relaxation in near-critical fluids and critical speeding up: discrepancies caused by boundary effects. Phys Rev Lett 84:3224–3228CrossRef
8.
Zurück zum Zitat Chiwata Y, Onuki A (2001) Thermal plumes and convection in highly compressible fluids. Phys Rev Lett 87:114301CrossRef Chiwata Y, Onuki A (2001) Thermal plumes and convection in highly compressible fluids. Phys Rev Lett 87:114301CrossRef
9.
Zurück zum Zitat Amiroudine S, Zappoli B (2003) Piston effect induced thermal oscillations at the Rayleigh-Benard threshold in supercritical 3He. Phys Rev Lett 90:105303CrossRef Amiroudine S, Zappoli B (2003) Piston effect induced thermal oscillations at the Rayleigh-Benard threshold in supercritical 3He. Phys Rev Lett 90:105303CrossRef
10.
Zurück zum Zitat Accary G, Raspo I, Bontoux P, Zappoli B (2005) Rayleith-Benard and Schwarzschild instability in a supercritical fluid. Adv Space Res 36:11–16CrossRefMATH Accary G, Raspo I, Bontoux P, Zappoli B (2005) Rayleith-Benard and Schwarzschild instability in a supercritical fluid. Adv Space Res 36:11–16CrossRefMATH
11.
Zurück zum Zitat Accary G, Bontoux P, Zappoli B (2007) Convection in a supercritical fluid: A reduced model for geophysical flows. Phys Fluids 19:014104CrossRefMATH Accary G, Bontoux P, Zappoli B (2007) Convection in a supercritical fluid: A reduced model for geophysical flows. Phys Fluids 19:014104CrossRefMATH
12.
Zurück zum Zitat Chen L, Zhang XR, Okajima J, Maruyama S (2013) Abnormal microchannel convective fluid flow near the gas-liquid critical point. Physica A 398:10–24CrossRef Chen L, Zhang XR, Okajima J, Maruyama S (2013) Abnormal microchannel convective fluid flow near the gas-liquid critical point. Physica A 398:10–24CrossRef
13.
Zurück zum Zitat Frohlich T, Beysens D, Garrabos Y (2006) Piston effect induced thermal jets in near-critical fluids. Phys Rev E 74:046307CrossRef Frohlich T, Beysens D, Garrabos Y (2006) Piston effect induced thermal jets in near-critical fluids. Phys Rev E 74:046307CrossRef
14.
Zurück zum Zitat Carles P, Dadzie K (2005) Two typical time scales of the piston effect. Phys Rev E 71:066310CrossRef Carles P, Dadzie K (2005) Two typical time scales of the piston effect. Phys Rev E 71:066310CrossRef
15.
Zurück zum Zitat Onuki A, Hao H, Ferrell RA (1990) Fast adiabatic equilibrium in a single-component fluid near the liquid-vapor critical point. Phys Rev A 41:2256–2260CrossRef Onuki A, Hao H, Ferrell RA (1990) Fast adiabatic equilibrium in a single-component fluid near the liquid-vapor critical point. Phys Rev A 41:2256–2260CrossRef
16.
Zurück zum Zitat Chen L, Deng BL, Zhang XR (2013) Experimental study of trans-critical and supercritical CO2 natural circulation flow in a closed loop. Appl Therm Eng 59:1–13CrossRef Chen L, Deng BL, Zhang XR (2013) Experimental study of trans-critical and supercritical CO2 natural circulation flow in a closed loop. Appl Therm Eng 59:1–13CrossRef
17.
Zurück zum Zitat Chen L, Deng BL, Zhang XR (2013) Experimental investigation of CO2 thermosyphon flow and heat transfer in the supercritical region. Int J Heat Mass Trans 64:202–211CrossRef Chen L, Deng BL, Zhang XR (2013) Experimental investigation of CO2 thermosyphon flow and heat transfer in the supercritical region. Int J Heat Mass Trans 64:202–211CrossRef
18.
Zurück zum Zitat Chen L, Zhang XR, Cao SM, Bai H (2012) Study of trans-critical CO2 natural convection flow with unsteady heat input and its implications on system control. Int J Heat Mass Trans 55:7119–7132CrossRef Chen L, Zhang XR, Cao SM, Bai H (2012) Study of trans-critical CO2 natural convection flow with unsteady heat input and its implications on system control. Int J Heat Mass Trans 55:7119–7132CrossRef
19.
Zurück zum Zitat Chen L, Zhang XR, Jiang B (2014) Effects of heater orientations on the natural circulation and heat transfer in a supercritical CO2 rectangular loop. ASME J Heat Transfer 136:052501CrossRef Chen L, Zhang XR, Jiang B (2014) Effects of heater orientations on the natural circulation and heat transfer in a supercritical CO2 rectangular loop. ASME J Heat Transfer 136:052501CrossRef
20.
Zurück zum Zitat Chen L, Zhang XR, Okajima J, Maruyama S (2013) Thermal relaxation and critical instability of near-critical fluid microchannel flow. Phys Rev E 87:043016CrossRef Chen L, Zhang XR, Okajima J, Maruyama S (2013) Thermal relaxation and critical instability of near-critical fluid microchannel flow. Phys Rev E 87:043016CrossRef
21.
Zurück zum Zitat Falk FL, Commenge JM (2010) Performance comparison of micromixers. Chem Eng Sci 65:405–411CrossRef Falk FL, Commenge JM (2010) Performance comparison of micromixers. Chem Eng Sci 65:405–411CrossRef
22.
Zurück zum Zitat Kumar V, Paraschivoiu M, Nigam KDP (2011) Single-phase fluid flow and mixing in microchannels. Chem Eng Sci 66:1329–1373CrossRef Kumar V, Paraschivoiu M, Nigam KDP (2011) Single-phase fluid flow and mixing in microchannels. Chem Eng Sci 66:1329–1373CrossRef
23.
Zurück zum Zitat Luong TD, Phan VN, Nguyen NT (2011) High-throughput micromixers based on acoustic streaming induced by surface acoustic wave. Microfluid Nanofluid 10:619–625CrossRef Luong TD, Phan VN, Nguyen NT (2011) High-throughput micromixers based on acoustic streaming induced by surface acoustic wave. Microfluid Nanofluid 10:619–625CrossRef
24.
Zurück zum Zitat Zhang Y, Wang TH (2012) Micro magnetic gyromixer for speeding up reactions in droplets. Microfluid Nanofluid 12(5):787–794CrossRef Zhang Y, Wang TH (2012) Micro magnetic gyromixer for speeding up reactions in droplets. Microfluid Nanofluid 12(5):787–794CrossRef
25.
Zurück zum Zitat Zurigat YH, Nayfeh AH, Masad JA (1992) Effect of pressure gradient on the stability of compressible boundary layers. AIAA J 30:2204–2211CrossRefMATH Zurigat YH, Nayfeh AH, Masad JA (1992) Effect of pressure gradient on the stability of compressible boundary layers. AIAA J 30:2204–2211CrossRefMATH
26.
Zurück zum Zitat Libby PA, Baronti PO, Napolitano L (1964) Study of the incompressible turbulent boundary layer with pressure gradient. AIAA J 2:445–452MathSciNetCrossRefMATH Libby PA, Baronti PO, Napolitano L (1964) Study of the incompressible turbulent boundary layer with pressure gradient. AIAA J 2:445–452MathSciNetCrossRefMATH
27.
Zurück zum Zitat Steiger MH, Bloom MH (1964) Linearized viscous free mixing with streamwise pressure gradients. AIAA J 2:263–266CrossRefMATH Steiger MH, Bloom MH (1964) Linearized viscous free mixing with streamwise pressure gradients. AIAA J 2:263–266CrossRefMATH
28.
Zurück zum Zitat Frohlich T, Guenoun P, Bonetti M, Perrot F, Beysens D, Garrabos Y, Neindre B, Bravais P (1996) Adiabatic versus conductive heat transfer in off-critical SF6 in the absence of convection. Phys Rev E 54:1544–1549CrossRef Frohlich T, Guenoun P, Bonetti M, Perrot F, Beysens D, Garrabos Y, Neindre B, Bravais P (1996) Adiabatic versus conductive heat transfer in off-critical SF6 in the absence of convection. Phys Rev E 54:1544–1549CrossRef
29.
Zurück zum Zitat Garrabos Y, Bonetti M, Beysens D, Perrot F, Frohlich T, Carles P, Zappoli B (1998) Relaxation of a supercritical fluid after a heat pulse in the absence of gravity effects: theory and experiments. Phys Rev E 57:5665–5681CrossRef Garrabos Y, Bonetti M, Beysens D, Perrot F, Frohlich T, Carles P, Zappoli B (1998) Relaxation of a supercritical fluid after a heat pulse in the absence of gravity effects: theory and experiments. Phys Rev E 57:5665–5681CrossRef
30.
Zurück zum Zitat Garrabos Y, Beysens D, Lecountre C, Dejoan A, Polezhaev V, Emelianov V (2007) Thermoconvectional phenomena induced by vibrations in supercritical SF6 under weightlessness. Phys Rev E 75:056317CrossRef Garrabos Y, Beysens D, Lecountre C, Dejoan A, Polezhaev V, Emelianov V (2007) Thermoconvectional phenomena induced by vibrations in supercritical SF6 under weightlessness. Phys Rev E 75:056317CrossRef
31.
Zurück zum Zitat Dimmic GR, Chatoorgoon VV, Khartabil HF, Duffey RB (2002) Natural-convection studies for advanced CANDU reactor concepts. Nucl Eng Des 215:27–38CrossRef Dimmic GR, Chatoorgoon VV, Khartabil HF, Duffey RB (2002) Natural-convection studies for advanced CANDU reactor concepts. Nucl Eng Des 215:27–38CrossRef
32.
Zurück zum Zitat Chen L, Deng BL, Jiang B, Zhang XR (2013) Thermal and hydrodynamic characteristics of supercritical CO2 natural circulation in closed loops. Nucl Eng Des 257:21–30CrossRef Chen L, Deng BL, Jiang B, Zhang XR (2013) Thermal and hydrodynamic characteristics of supercritical CO2 natural circulation in closed loops. Nucl Eng Des 257:21–30CrossRef
33.
Zurück zum Zitat Shen B, Zhang P (2011) Thermoacoustic waves along the critical isochore. Phys Rev E 83:011115CrossRef Shen B, Zhang P (2011) Thermoacoustic waves along the critical isochore. Phys Rev E 83:011115CrossRef
34.
Zurück zum Zitat Asinari P (2005) Numerical prediction of turbulent convective heat transfer in mini/micro channels for carbon dioxide at supercritical pressure. Int J Heat Mass Trans 48:3864–3879CrossRefMATH Asinari P (2005) Numerical prediction of turbulent convective heat transfer in mini/micro channels for carbon dioxide at supercritical pressure. Int J Heat Mass Trans 48:3864–3879CrossRefMATH
35.
Zurück zum Zitat Jiang PX, Zhang Y, Shi RF (2008) Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical tube at low Reynolds numbers. Int J Therm Sci 47:998–1011CrossRef Jiang PX, Zhang Y, Shi RF (2008) Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical tube at low Reynolds numbers. Int J Therm Sci 47:998–1011CrossRef
Metadaten
Titel
Heat Transfer Characteristics of Near-Critical Microchannel Flows
verfasst von
Lin Chen
Copyright-Jahr
2017
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-2784-0_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.