Skip to main content

2018 | OriginalPaper | Buchkapitel

15. Heat Transfer in Rotating Flows

verfasst von : Stefan aus der Wiesche

Erschienen in: Handbook of Thermal Science and Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Convective heat transfer in rotating flows is of great technical and scientific importance. Two kinds of configurations, namely, bodies of revolution spinning in a fluid and rotor-stator disk systems, are considered in this chapter. In many cases, not only centrifugal but also Coriolis force contributions play a significant role, and the boundary layer flow is essentially three dimensional. In this case, the rotating flow and heat transfer cannot be described by a simple change of the reference frame and very complex and unexpected phenomena can be found. A substantial difficulty is given by the fact that the number of input parameters is typically rather large in case of rotating systems subjected to an outer forced flow. Then, not only the rotational Reynolds number and the Prandtl number are important for the resulting heat transfer but also the translational Reynolds number and further input variables like angle of incidence or partial admission factors. In this chapter, experimental, theoretical, and recent numerical methods are reviewed. The following discussion is limited to an incompressible Newtonian fluid. Selected results of current research projects are discussed, too. The phenomena arising from natural convection or heat transfer in a rotating fluid heated from below might be found in Chap.​ 16, “Natural Convection in Rotating Flows.​”

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akselvoll K, Moin P (1996) Large-eddy simulation of turbulent confined coannular jets. J Fluid Mech 315:387–411CrossRef Akselvoll K, Moin P (1996) Large-eddy simulation of turbulent confined coannular jets. J Fluid Mech 315:387–411CrossRef
Zurück zum Zitat Andersson HI, Lygren M (2006) LES of open rotor-stator flow. Int J Heat Fluid Flow 27:551–557CrossRef Andersson HI, Lygren M (2006) LES of open rotor-stator flow. Int J Heat Fluid Flow 27:551–557CrossRef
Zurück zum Zitat Andronov AA, Leontovich EA, Gordon II, Maier AG (1973) Qualitative theory of second-order dynamic systems. Wiley, New YorkMATH Andronov AA, Leontovich EA, Gordon II, Maier AG (1973) Qualitative theory of second-order dynamic systems. Wiley, New YorkMATH
Zurück zum Zitat Awad MM (2008) Heat transfer from a rotating disk to fluids for a wide range of Prandtl numbers using the asymptotic model. ASME J Heat Transf 130:14505CrossRef Awad MM (2008) Heat transfer from a rotating disk to fluids for a wide range of Prandtl numbers using the asymptotic model. ASME J Heat Transf 130:14505CrossRef
Zurück zum Zitat Barlow JB, Rae WH, Pope A (1999) Low speed wind tunnel testing. Wiley, New York Barlow JB, Rae WH, Pope A (1999) Low speed wind tunnel testing. Wiley, New York
Zurück zum Zitat Batchelor GK (1951) Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow. Q J Mech Appl Math 4:29–41MathSciNetCrossRef Batchelor GK (1951) Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow. Q J Mech Appl Math 4:29–41MathSciNetCrossRef
Zurück zum Zitat Bödewadt UT (1940) Die Drehströmung über festem Grunde. ZAMM 20:241–253CrossRef Bödewadt UT (1940) Die Drehströmung über festem Grunde. ZAMM 20:241–253CrossRef
Zurück zum Zitat Brady JF, Durlofsky L (1987) On rotating disk flow. J Fluid Mech 175:363–394CrossRef Brady JF, Durlofsky L (1987) On rotating disk flow. J Fluid Mech 175:363–394CrossRef
Zurück zum Zitat Cardone G, Astarita T, Carlomagno GM (1997) Heat transfer measurements on a rotating disk. Int J Rotating Mach 3:1–9CrossRef Cardone G, Astarita T, Carlomagno GM (1997) Heat transfer measurements on a rotating disk. Int J Rotating Mach 3:1–9CrossRef
Zurück zum Zitat Cho HH, Rhee DH (2001) Local heat/mass transfer measurements on the effusion plate in impingement/effusion cooling systems. ASME J Turbomach 123:601–608CrossRef Cho HH, Rhee DH (2001) Local heat/mass transfer measurements on the effusion plate in impingement/effusion cooling systems. ASME J Turbomach 123:601–608CrossRef
Zurück zum Zitat Cho HH, Won CH, Ryu GY, Rhee DH (2002) Local heat transfer characteristics in a single rotating disk and co-rotating disks. Microsyst Technol 9:399–408CrossRef Cho HH, Won CH, Ryu GY, Rhee DH (2002) Local heat transfer characteristics in a single rotating disk and co-rotating disks. Microsyst Technol 9:399–408CrossRef
Zurück zum Zitat Cobb EC, Saunders OA (1956) Heat transfer from a rotating disc. Proc Roy Soc A 236:343–351CrossRef Cobb EC, Saunders OA (1956) Heat transfer from a rotating disc. Proc Roy Soc A 236:343–351CrossRef
Zurück zum Zitat Czarny O, Iacovides H, Launder BE (2002) Precessing vortex structures in turbulent flow within rotor-stator disc cavities. Flow Turbul Combust 69:51–61CrossRef Czarny O, Iacovides H, Launder BE (2002) Precessing vortex structures in turbulent flow within rotor-stator disc cavities. Flow Turbul Combust 69:51–61CrossRef
Zurück zum Zitat Daily JW, Nece RE (1960) Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks. ASME J Basic Eng 82:217–232CrossRef Daily JW, Nece RE (1960) Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks. ASME J Basic Eng 82:217–232CrossRef
Zurück zum Zitat Dennis RW, Newstead C, Ede AJ (1970) The heat transfer from a rotating disc in an air crossflow. In: Proceedings 4th international heat transfer conference, Paris-Versailles, FC 7.1 Dennis RW, Newstead C, Ede AJ (1970) The heat transfer from a rotating disc in an air crossflow. In: Proceedings 4th international heat transfer conference, Paris-Versailles, FC 7.1
Zurück zum Zitat Dorfman LA (1963) Hydrodynamic resistance and the heat loss of rotating solids. Oliver & Boyd, EdinburghMATH Dorfman LA (1963) Hydrodynamic resistance and the heat loss of rotating solids. Oliver & Boyd, EdinburghMATH
Zurück zum Zitat Ekman VW (1902) Om Jordrotationens inverkan på vindstrømmar I hafvet. Nytt Mag Nat 40:37–62 Ekman VW (1902) Om Jordrotationens inverkan på vindstrømmar I hafvet. Nytt Mag Nat 40:37–62
Zurück zum Zitat Elkins CJ (1997) Heat transfer in the rotating disk boundary layer. Dissertation, Stanford University Elkins CJ (1997) Heat transfer in the rotating disk boundary layer. Dissertation, Stanford University
Zurück zum Zitat Elkins CJ, Eaton JK (2000) Turbulent heat and momentum transport on a rotating disk. J Fluid Mech 402:225–253CrossRef Elkins CJ, Eaton JK (2000) Turbulent heat and momentum transport on a rotating disk. J Fluid Mech 402:225–253CrossRef
Zurück zum Zitat Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3:1760–1765CrossRef Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3:1760–1765CrossRef
Zurück zum Zitat Gregory N, Stuart JT, Walker WS (1956) On the stability of the three-dimensional boundary layers with application to the flow due to a rotating disk. Phil Trans Roy Soc A 248:155–199MathSciNetCrossRef Gregory N, Stuart JT, Walker WS (1956) On the stability of the three-dimensional boundary layers with application to the flow due to a rotating disk. Phil Trans Roy Soc A 248:155–199MathSciNetCrossRef
Zurück zum Zitat Hannah DM (1947) Forced flow against a rotating disk. Brit ARC Rept Mem No 2772 Hannah DM (1947) Forced flow against a rotating disk. Brit ARC Rept Mem No 2772
Zurück zum Zitat Harmand S, Pelle J, Poncet S, Shevchuk IV (2013) Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet. Int J Thermal Sci 67:1–30CrossRef Harmand S, Pelle J, Poncet S, Shevchuk IV (2013) Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet. Int J Thermal Sci 67:1–30CrossRef
Zurück zum Zitat Helcig C, Wiesche, Aus Der S (2016) Effect of Prandtl number on the heat transfer from a laminar rotating disk: an experimental study. In: Proceedings ASME summer heat transfer conference, 1:paper-ID: HT2016–7062,Washington, DC Helcig C, Wiesche, Aus Der S (2016) Effect of Prandtl number on the heat transfer from a laminar rotating disk: an experimental study. In: Proceedings ASME summer heat transfer conference, 1:paper-ID: HT2016–7062,Washington, DC
Zurück zum Zitat Kakade VU, Lock GD, Wilson M, Owens JM, Mayhew JE (2009) Accurate heat transfer measurements using thermochromic liquid crystals. Part 2: application to a rotating disc. Int J Heat Fluid Flow 30:950–959CrossRef Kakade VU, Lock GD, Wilson M, Owens JM, Mayhew JE (2009) Accurate heat transfer measurements using thermochromic liquid crystals. Part 2: application to a rotating disc. Int J Heat Fluid Flow 30:950–959CrossRef
Zurück zum Zitat Khalili A, Adabala RR, Rath HJ (1994) Nonlinear effects on rotating disk flow in a cylindrical casing. Acta Mech 107:1–11CrossRef Khalili A, Adabala RR, Rath HJ (1994) Nonlinear effects on rotating disk flow in a cylindrical casing. Acta Mech 107:1–11CrossRef
Zurück zum Zitat Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech 177:133–166CrossRef Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech 177:133–166CrossRef
Zurück zum Zitat Kreiss HO, Parter SV (1983) On the swirling flow between rotating coaxial disks: existence and uniqueness. Commun Pure Appl Math 36:55–84CrossRef Kreiss HO, Parter SV (1983) On the swirling flow between rotating coaxial disks: existence and uniqueness. Commun Pure Appl Math 36:55–84CrossRef
Zurück zum Zitat Kreith F (1968) Convection heat transfer in rotating systems. Adv Heat Tran 5:129–251CrossRef Kreith F (1968) Convection heat transfer in rotating systems. Adv Heat Tran 5:129–251CrossRef
Zurück zum Zitat Lamb H (1916) Hydrodynamics. Cambridge University Press, CambridgeMATH Lamb H (1916) Hydrodynamics. Cambridge University Press, CambridgeMATH
Zurück zum Zitat Latour B, Bouvier P, Harmand S (2011) Convective heat transfer on a rotating disk with transverse air crossflow. ASME J Heat Transf 133:021702. (10 pages)CrossRef Latour B, Bouvier P, Harmand S (2011) Convective heat transfer on a rotating disk with transverse air crossflow. ASME J Heat Transf 133:021702. (10 pages)CrossRef
Zurück zum Zitat Launder BE, Spalding DB (1972) Mathematical models of turbulence. Academic, LondonMATH Launder BE, Spalding DB (1972) Mathematical models of turbulence. Academic, LondonMATH
Zurück zum Zitat Launder B, Poncet S, Serre E (2010) Laminar, transitional, and turbulent flows in rotor-stator cavities. Annu Rev Fluid Mech 42:229–248CrossRef Launder B, Poncet S, Serre E (2010) Laminar, transitional, and turbulent flows in rotor-stator cavities. Annu Rev Fluid Mech 42:229–248CrossRef
Zurück zum Zitat Legendre R (1956) Separation de l’ecoulement laminaire tridimensionnel. Rech Aero 54:3–8 Legendre R (1956) Separation de l’ecoulement laminaire tridimensionnel. Rech Aero 54:3–8
Zurück zum Zitat Lesieur M, Metais O, Comte P (2005) Large-Eddy simulations of turbulence. Cambridge University Press, Cambridge, UKCrossRef Lesieur M, Metais O, Comte P (2005) Large-Eddy simulations of turbulence. Cambridge University Press, Cambridge, UKCrossRef
Zurück zum Zitat Lighthill MJ (1963) Attachment and separation in three-dimensional flow. In: Rosenhead L (ed) Laminar boundary layers. Oxford University Press, section II 2.6 Lighthill MJ (1963) Attachment and separation in three-dimensional flow. In: Rosenhead L (ed) Laminar boundary layers. Oxford University Press, section II 2.6
Zurück zum Zitat Lilly DK (1992) A proposed modification of the Germano subgrid-scale closure method. Phys Fluids A 4:633–635CrossRef Lilly DK (1992) A proposed modification of the Germano subgrid-scale closure method. Phys Fluids A 4:633–635CrossRef
Zurück zum Zitat Lin H-T, Lin L-K (1987) Heat transfer from a rotating cone or disk to fluids of any Prandtl number. Int Com Heat Mass Transf 14:323–332CrossRef Lin H-T, Lin L-K (1987) Heat transfer from a rotating cone or disk to fluids of any Prandtl number. Int Com Heat Mass Transf 14:323–332CrossRef
Zurück zum Zitat Lingwood RL (1996) An experimental study of absolute instability of the rotating disk boundary layer flow. J Fluid Mech 314:373–405CrossRef Lingwood RL (1996) An experimental study of absolute instability of the rotating disk boundary layer flow. J Fluid Mech 314:373–405CrossRef
Zurück zum Zitat Littell HS, Eaton JK (1994) Turbulence characteristics of the boundary layer on a rotating disk. J Fluid Mech 266:175–207CrossRef Littell HS, Eaton JK (1994) Turbulence characteristics of the boundary layer on a rotating disk. J Fluid Mech 266:175–207CrossRef
Zurück zum Zitat Lygren M, Andersson HI (2004) Large eddy simulations of the turbulent flow between a rotating and a stationary disk. ZAMP 55:268–281MathSciNetCrossRef Lygren M, Andersson HI (2004) Large eddy simulations of the turbulent flow between a rotating and a stationary disk. ZAMP 55:268–281MathSciNetCrossRef
Zurück zum Zitat Mabuchi I, Tanaka T, Sakakibara Y (1971) Studies on the convective heat transfer from a rotating disk (5th report, experiment on the laminar heat transfer from a rotating isothermal disk in a uniform forced stream). Bull JSME 14:581–589CrossRef Mabuchi I, Tanaka T, Sakakibara Y (1971) Studies on the convective heat transfer from a rotating disk (5th report, experiment on the laminar heat transfer from a rotating isothermal disk in a uniform forced stream). Bull JSME 14:581–589CrossRef
Zurück zum Zitat Mellor GL, Chapple PJ, Stokes VK (1968) On the flow between a rotating and a stationary disk. J Fluid Mech 31:95–112CrossRef Mellor GL, Chapple PJ, Stokes VK (1968) On the flow between a rotating and a stationary disk. J Fluid Mech 31:95–112CrossRef
Zurück zum Zitat Meneveau C, Lund TS, Cabot WH (1996) A Lagrangian dynamic subgrid-scale model of turbulence. J Fluid Mech 319:353–385CrossRef Meneveau C, Lund TS, Cabot WH (1996) A Lagrangian dynamic subgrid-scale model of turbulence. J Fluid Mech 319:353–385CrossRef
Zurück zum Zitat Moalem Maron D, Cohen S (1991) Hydrodynamics and heat/mass transfer near rotating surfaces. Adv Heat Tran 21:141–183CrossRef Moalem Maron D, Cohen S (1991) Hydrodynamics and heat/mass transfer near rotating surfaces. Adv Heat Tran 21:141–183CrossRef
Zurück zum Zitat Moore FK (1958) On the separation of the unsteady laminar boundary layer. In: Görtler H (ed) Grenzschichtforschung. Springer, Berlin, pp 296–311CrossRef Moore FK (1958) On the separation of the unsteady laminar boundary layer. In: Görtler H (ed) Grenzschichtforschung. Springer, Berlin, pp 296–311CrossRef
Zurück zum Zitat Nguyen TD, Harmand S (2013) Heat and mass transfer from a rotating cylinder with a spanwise disk at low-velocity crossflows. In: Proceedings of ASME fluids engineering summer meeting, Incline Village, Nevada, FEDSM2013-16541 Nguyen TD, Harmand S (2013) Heat and mass transfer from a rotating cylinder with a spanwise disk at low-velocity crossflows. In: Proceedings of ASME fluids engineering summer meeting, Incline Village, Nevada, FEDSM2013-16541
Zurück zum Zitat Owen JM (2000) Flow and heat transfer in rotating disc systems. In: Nagano Y, Hanjalic K, Tsuji T (eds) CHT01 turbulence heat and mass transfer 3. Aichi Shuppan, Tokyo, pp 33–58 Owen JM (2000) Flow and heat transfer in rotating disc systems. In: Nagano Y, Hanjalic K, Tsuji T (eds) CHT01 turbulence heat and mass transfer 3. Aichi Shuppan, Tokyo, pp 33–58
Zurück zum Zitat Owen JM, Rogers RH (1989) Flow and heat transfer in rotating disc systems, vols 1 and 2. Research Studies Press Ltd, Taunton Owen JM, Rogers RH (1989) Flow and heat transfer in rotating disc systems, vols 1 and 2. Research Studies Press Ltd, Taunton
Zurück zum Zitat Pelle J, Harmand S (2007) Heat transfer measurements in an opened rotor-stator system air-gap. Exp Thermal Fluid Sci 31:165–180CrossRef Pelle J, Harmand S (2007) Heat transfer measurements in an opened rotor-stator system air-gap. Exp Thermal Fluid Sci 31:165–180CrossRef
Zurück zum Zitat Perry AE, Chong MS (1987) A description of eddying motions and flow patterns using critical-point concepts. Annu Rev Fluid Mech 19:125–155CrossRef Perry AE, Chong MS (1987) A description of eddying motions and flow patterns using critical-point concepts. Annu Rev Fluid Mech 19:125–155CrossRef
Zurück zum Zitat Schlichting H (1968) Boundary-layer theory. McGraw-Hill, New YorkMATH Schlichting H (1968) Boundary-layer theory. McGraw-Hill, New YorkMATH
Zurück zum Zitat Schouveiler L, Le Gal P, Chauve MP (2001) Instabilities of the flow between a rotating and a stationary disk. J Fluid Mech 443:329–350CrossRef Schouveiler L, Le Gal P, Chauve MP (2001) Instabilities of the flow between a rotating and a stationary disk. J Fluid Mech 443:329–350CrossRef
Zurück zum Zitat Severac E, Serre E (2007) A spectral vanishing viscosity for the LES of turbulent flows within rotating cavities. J Comput Phys 226:1234–1255MathSciNetCrossRef Severac E, Serre E (2007) A spectral vanishing viscosity for the LES of turbulent flows within rotating cavities. J Comput Phys 226:1234–1255MathSciNetCrossRef
Zurück zum Zitat Shevchuk IV (2008) A new evaluation method for Nusselt numbers in naphthalene sublimation experiments in rotating disk systems. Heat Mass Transf 44:1409–1415CrossRef Shevchuk IV (2008) A new evaluation method for Nusselt numbers in naphthalene sublimation experiments in rotating disk systems. Heat Mass Transf 44:1409–1415CrossRef
Zurück zum Zitat Shevchuk IV (2009) Convective heat and mass transfer in rotating disk systems. Springer, BerlinCrossRef Shevchuk IV (2009) Convective heat and mass transfer in rotating disk systems. Springer, BerlinCrossRef
Zurück zum Zitat Shevchuk IV, Saniei N, Yan XT (2003) Impingement heat transfer over a rotating disk: integral method. AIAA J Thermophys Heat Transf 17:291–293CrossRef Shevchuk IV, Saniei N, Yan XT (2003) Impingement heat transfer over a rotating disk: integral method. AIAA J Thermophys Heat Transf 17:291–293CrossRef
Zurück zum Zitat Shimada R, Naito S, Kumagai S, Takeyama T (1987) Enhancement of heat transfer from a rotating disk using turbulence promoter. JSME Int J Ser B 30:1423–1429CrossRef Shimada R, Naito S, Kumagai S, Takeyama T (1987) Enhancement of heat transfer from a rotating disk using turbulence promoter. JSME Int J Ser B 30:1423–1429CrossRef
Zurück zum Zitat Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91:99–164CrossRef Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91:99–164CrossRef
Zurück zum Zitat Soo SL (1958) Laminar flow over an enclosed rotating disk. Trans ASME 80:287–296 Soo SL (1958) Laminar flow over an enclosed rotating disk. Trans ASME 80:287–296
Zurück zum Zitat Spalart PR (1988) Direct simulation of a turbulent boundary layer up to Reθ = 1410. J Fluid Mech 187:61–98CrossRef Spalart PR (1988) Direct simulation of a turbulent boundary layer up to Reθ = 1410. J Fluid Mech 187:61–98CrossRef
Zurück zum Zitat Sparrow EM, Gregg JL (1959) Heat transfer from a rotating disk to fluids of any Prandtl number. ASME J Heat Trans 81:249–251 Sparrow EM, Gregg JL (1959) Heat transfer from a rotating disk to fluids of any Prandtl number. ASME J Heat Trans 81:249–251
Zurück zum Zitat Stokes GG (1845) On the Theories of the Internal Friction of Fluids in Motion, and of the Equilibrium and Motion of Elastic Solids. Cambridge Trans 8:287 Stokes GG (1845) On the Theories of the Internal Friction of Fluids in Motion, and of the Equilibrium and Motion of Elastic Solids. Cambridge Trans 8:287
Zurück zum Zitat Taylor GI (1923) Stability of a viscous liquid contained between two rotating cylinders. Phil Trans Roy Soc Lond A 223:239–343CrossRef Taylor GI (1923) Stability of a viscous liquid contained between two rotating cylinders. Phil Trans Roy Soc Lond A 223:239–343CrossRef
Zurück zum Zitat Taylor ES (1974) Dimensional analysis for engineers. Clarendon, Oxford Taylor ES (1974) Dimensional analysis for engineers. Clarendon, Oxford
Zurück zum Zitat Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press, Cambridge, MAMATH Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press, Cambridge, MAMATH
Zurück zum Zitat Tuliszka-Sznitko E, Majchrowski W (2010) LES and DNS of the flow with heat transfer in rotating cavity. Comp Meth Sci Tech 16:105–114CrossRef Tuliszka-Sznitko E, Majchrowski W (2010) LES and DNS of the flow with heat transfer in rotating cavity. Comp Meth Sci Tech 16:105–114CrossRef
Zurück zum Zitat Tuliszka-Sznitko E, Zielinski A, Majchrowski W (2009) LES of the transitional flow in rotor/stator cavity. Arch Mech 61:93–118MATH Tuliszka-Sznitko E, Zielinski A, Majchrowski W (2009) LES of the transitional flow in rotor/stator cavity. Arch Mech 61:93–118MATH
Zurück zum Zitat Veronis G (1970) The analogy between rotating and stratified fluids. Annu Rev Fluid Mech 2:37–66CrossRef Veronis G (1970) The analogy between rotating and stratified fluids. Annu Rev Fluid Mech 2:37–66CrossRef
Zurück zum Zitat Viskanta R (1993) Heat transfer to impinging isothermal gas and flame jets. Exp Thermal Fluid Sci 6:111–134CrossRef Viskanta R (1993) Heat transfer to impinging isothermal gas and flame jets. Exp Thermal Fluid Sci 6:111–134CrossRef
Zurück zum Zitat von Karman T (1921) Über laminare und turbulente Reibung. ZAMM 1:233–252CrossRef von Karman T (1921) Über laminare und turbulente Reibung. ZAMM 1:233–252CrossRef
Zurück zum Zitat Vreman B, Geurts B, Kuerten H (1994) On the formulation of the dynamic mixed subgrid-scale model. Phys Fluids 6:4057–4059CrossRef Vreman B, Geurts B, Kuerten H (1994) On the formulation of the dynamic mixed subgrid-scale model. Phys Fluids 6:4057–4059CrossRef
Zurück zum Zitat Wiesche SAD (2004) LES study of heat transfer augmentation and wake instabilities of a rotating disk in a planar stream of air. Heat Mass Transf 40:271–284CrossRef Wiesche SAD (2004) LES study of heat transfer augmentation and wake instabilities of a rotating disk in a planar stream of air. Heat Mass Transf 40:271–284CrossRef
Zurück zum Zitat Wiesche SAD (2007) Heat transfer from a rotating disk in a parallel air crossflow. Int J Thermal Sci 46:745–754CrossRef Wiesche SAD (2007) Heat transfer from a rotating disk in a parallel air crossflow. Int J Thermal Sci 46:745–754CrossRef
Zurück zum Zitat Wiesche ADS, Helcig C (2016) Convective heat transfer from rotating disks subjected to streams of air. Springer, New YorkCrossRef Wiesche ADS, Helcig C (2016) Convective heat transfer from rotating disks subjected to streams of air. Springer, New YorkCrossRef
Zurück zum Zitat Wu X, Squires KD (2000) Prediction and investigation of the turbulent flow over a rotating disk. J Fluid Mech 418:231–264CrossRef Wu X, Squires KD (2000) Prediction and investigation of the turbulent flow over a rotating disk. J Fluid Mech 418:231–264CrossRef
Zurück zum Zitat Zandbergen PJ, Dijkstra D (1987) Von Karman swirling flows. Annu Rev Fluid Mech 19:465–491CrossRef Zandbergen PJ, Dijkstra D (1987) Von Karman swirling flows. Annu Rev Fluid Mech 19:465–491CrossRef
Zurück zum Zitat Zang Y, Street R, Koseff JR (1993) A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys Fluids 5:3186–3196CrossRef Zang Y, Street R, Koseff JR (1993) A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys Fluids 5:3186–3196CrossRef
Metadaten
Titel
Heat Transfer in Rotating Flows
verfasst von
Stefan aus der Wiesche
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-26695-4_12

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.