Skip to main content
Erschienen in: Computational Mechanics 3/2018

27.10.2017 | Original Paper

Heat transfer model and finite element formulation for simulation of selective laser melting

verfasst von: Souvik Roy, Mario Juha, Mark S. Shephard, Antoinette M. Maniatty

Erschienen in: Computational Mechanics | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel approach and finite element formulation for modeling the melting, consolidation, and re-solidification process that occurs in selective laser melting additive manufacturing is presented. Two state variables are introduced to track the phase (melt/solid) and the degree of consolidation (powder/fully dense). The effect of the consolidation on the absorption of the laser energy into the material as it transforms from a porous powder to a dense melt is considered. A Lagrangian finite element formulation, which solves the governing equations on the unconsolidated reference configuration is derived, which naturally considers the effect of the changing geometry as the powder melts without needing to update the simulation domain. The finite element model is implemented into a general-purpose parallel finite element solver. Results are presented comparing to experimental results in the literature for a single laser track with good agreement. Predictions for a spiral laser pattern are also shown.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bourell DL, Leu MC, Rosen DW (eds) (2009) Roadmap for additive manufacturing: identifying the future of freeform processing. University of Texas, Austin Bourell DL, Leu MC, Rosen DW (eds) (2009) Roadmap for additive manufacturing: identifying the future of freeform processing. University of Texas, Austin
2.
Zurück zum Zitat Markl M, Körner C (2016) Multiscale modeling of powder bed-based additive manufacturing. Annu Rev Mater Res 46:93–123CrossRef Markl M, Körner C (2016) Multiscale modeling of powder bed-based additive manufacturing. Annu Rev Mater Res 46:93–123CrossRef
3.
Zurück zum Zitat Körner C, Bauereiß A, Attar E (2013) Fundamental consolidation mechanisms during selective beam melting of powders. Modell Simul Mater Sci Eng 21:085011CrossRef Körner C, Bauereiß A, Attar E (2013) Fundamental consolidation mechanisms during selective beam melting of powders. Modell Simul Mater Sci Eng 21:085011CrossRef
4.
Zurück zum Zitat Khairallah SA, Anderson A (2014) Mesoscopic simulation model of selective laser melting of stainless steel powder. J Mater Process Technol 214:2627–2636CrossRef Khairallah SA, Anderson A (2014) Mesoscopic simulation model of selective laser melting of stainless steel powder. J Mater Process Technol 214:2627–2636CrossRef
5.
Zurück zum Zitat Khairallah SA, Anderson A, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45CrossRef Khairallah SA, Anderson A, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45CrossRef
6.
Zurück zum Zitat Protasov CE, Khmyrov RS, Grigoriev SN, Gusarov AV (2017) Selective laser melting of fused silica: interdependent heat transfer and powder consolidation. Int J Heat Mass Transf 104:665–674CrossRef Protasov CE, Khmyrov RS, Grigoriev SN, Gusarov AV (2017) Selective laser melting of fused silica: interdependent heat transfer and powder consolidation. Int J Heat Mass Transf 104:665–674CrossRef
7.
Zurück zum Zitat Gusarov AV, Yadroitsev I, Bertrand P, Smurov I (2009) Model of radiation and heat transfer in laser–powder interaction zone at selective laser melting. J Heat Transf 131(7):072101-1–072101-10CrossRef Gusarov AV, Yadroitsev I, Bertrand P, Smurov I (2009) Model of radiation and heat transfer in laser–powder interaction zone at selective laser melting. J Heat Transf 131(7):072101-1–072101-10CrossRef
8.
Zurück zum Zitat Verhaeghe F, Craeghs T, Heulens J, Pandelaers L (2009) A pragmatic model for selective laser melting with evaporation. Acta Mater 57:6006–6012CrossRef Verhaeghe F, Craeghs T, Heulens J, Pandelaers L (2009) A pragmatic model for selective laser melting with evaporation. Acta Mater 57:6006–6012CrossRef
9.
Zurück zum Zitat Hodge NE, Ferencz RM, Solberg JM (2014) Implementation of a thermomechanical model for the simulation of selective laser melting. Comput Mech 54:33–51MathSciNetCrossRefMATH Hodge NE, Ferencz RM, Solberg JM (2014) Implementation of a thermomechanical model for the simulation of selective laser melting. Comput Mech 54:33–51MathSciNetCrossRefMATH
10.
Zurück zum Zitat Yan W, Ge W, Smith J, Lin S, Kafka OL, Lin F, Liu WK (2016) Multi-scale modeling of electron beam melting of functionally graded materials. Acta Mater 115:403–412CrossRef Yan W, Ge W, Smith J, Lin S, Kafka OL, Lin F, Liu WK (2016) Multi-scale modeling of electron beam melting of functionally graded materials. Acta Mater 115:403–412CrossRef
11.
Zurück zum Zitat Dai K, Shaw L (2006) Parametric studies of multi-material laser densification. Mater Sci Eng 430:221–229CrossRef Dai K, Shaw L (2006) Parametric studies of multi-material laser densification. Mater Sci Eng 430:221–229CrossRef
12.
Zurück zum Zitat Ma L, Bin H (2007) Temperature and stress analysis and simulation in fractal scanning-based laser sintering. Int J Adv Manuf Technol 34:898–903CrossRef Ma L, Bin H (2007) Temperature and stress analysis and simulation in fractal scanning-based laser sintering. Int J Adv Manuf Technol 34:898–903CrossRef
13.
Zurück zum Zitat Hussein A, Hao L, Yan C, Everson R (2013) Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater Des 52:638–647CrossRef Hussein A, Hao L, Yan C, Everson R (2013) Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater Des 52:638–647CrossRef
14.
Zurück zum Zitat Paul R, Anand S, Gerner F (2014) Effect of thermal deformation on part errors in metal powder based additive manufacturing processes. J Manuf Sci Eng Trans ASME 136:031009CrossRef Paul R, Anand S, Gerner F (2014) Effect of thermal deformation on part errors in metal powder based additive manufacturing processes. J Manuf Sci Eng Trans ASME 136:031009CrossRef
15.
Zurück zum Zitat Denlinger ER, Irwin J, Michaleris P (2014) Thermomechanical modeling of additive manufacturing large parts. J Manuf Sci Eng Trans ASME 136:061007CrossRef Denlinger ER, Irwin J, Michaleris P (2014) Thermomechanical modeling of additive manufacturing large parts. J Manuf Sci Eng Trans ASME 136:061007CrossRef
16.
Zurück zum Zitat Yu J, Lin X, Ma L, Wang J, Fu X, Chen J, Weidong H (2011) Influence of laser deposition patterns on part distortion, interior quality, and mechanical qualities by laser solid forming. Mater Sci Eng A 528:1094–1104 Yu J, Lin X, Ma L, Wang J, Fu X, Chen J, Weidong H (2011) Influence of laser deposition patterns on part distortion, interior quality, and mechanical qualities by laser solid forming. Mater Sci Eng A 528:1094–1104
17.
Zurück zum Zitat King WE, Barth HB, Castillo VM, Gallegos GF, Gibbs JW, Hahn DE, Kamath C, Rubenchik AM (2014) Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J Mater Process Technol 214:2915–2925CrossRef King WE, Barth HB, Castillo VM, Gallegos GF, Gibbs JW, Hahn DE, Kamath C, Rubenchik AM (2014) Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J Mater Process Technol 214:2915–2925CrossRef
18.
Zurück zum Zitat Xiao B, Zhang Y (2007) Analysis of melting of alloy powder bed with constant heat flux. Int J Heat Mass Transf 50:2161–2169CrossRefMATH Xiao B, Zhang Y (2007) Analysis of melting of alloy powder bed with constant heat flux. Int J Heat Mass Transf 50:2161–2169CrossRefMATH
19.
Zurück zum Zitat Salinger AG, Bartlett RA, Bradley AM, Chen Q, Demeshko IP, Gao X, Hansen GA, Mota A, Muller RP, Nielsen E, Ostien JT, Pawlowski RP, Perego M, Phipps ET, Sun W, Tezaur IK (2016) Albany: using component-based design to develop a flexible, generic multiphysics analysis code. Int J Multiscale Comput Eng 14(4):415–438CrossRef Salinger AG, Bartlett RA, Bradley AM, Chen Q, Demeshko IP, Gao X, Hansen GA, Mota A, Muller RP, Nielsen E, Ostien JT, Pawlowski RP, Perego M, Phipps ET, Sun W, Tezaur IK (2016) Albany: using component-based design to develop a flexible, generic multiphysics analysis code. Int J Multiscale Comput Eng 14(4):415–438CrossRef
20.
Zurück zum Zitat Wang S-L, Sekerka RF, Wheeler AA, Murray BT, Coriell SR, Braun RJ, McFadden GB (1993) Thermodynamically-consistent phase-field models for solidification. Physica D 69:189–200MathSciNetCrossRefMATH Wang S-L, Sekerka RF, Wheeler AA, Murray BT, Coriell SR, Braun RJ, McFadden GB (1993) Thermodynamically-consistent phase-field models for solidification. Physica D 69:189–200MathSciNetCrossRefMATH
21.
Zurück zum Zitat Davis JR (ed) (1994) Stainless steels. ASM specialty handbook. ASM, Materials Park Davis JR (ed) (1994) Stainless steels. ASM specialty handbook. ASM, Materials Park
22.
Zurück zum Zitat Song B, Dong S, Liao H, Coddet C (2012) Process parameter selection for selective laser melting of Ti\(_6\)Al\(_4\)V based on temperature distribution simulation and experimental sintering. Int J Adv Manuf Technol 61:967974CrossRef Song B, Dong S, Liao H, Coddet C (2012) Process parameter selection for selective laser melting of Ti\(_6\)Al\(_4\)V based on temperature distribution simulation and experimental sintering. Int J Adv Manuf Technol 61:967974CrossRef
23.
Zurück zum Zitat Antony K, Arivazhagan N, Senthilkumaran K (2014) Numerical and experimental investigations on laser melting of stainless steel 316l metal powders. J Manuf Process 16:345–355CrossRef Antony K, Arivazhagan N, Senthilkumaran K (2014) Numerical and experimental investigations on laser melting of stainless steel 316l metal powders. J Manuf Process 16:345–355CrossRef
24.
Zurück zum Zitat Mazumder J, Steen WM (1980) Heat transfer model for cw laser material processing. J Appl Phys 51(2):941–947CrossRef Mazumder J, Steen WM (1980) Heat transfer model for cw laser material processing. J Appl Phys 51(2):941–947CrossRef
25.
Zurück zum Zitat Cremers DA, Lewis GK, Korzekwa DR (1991) Measurement of energy deposition during pulsed laser welding. Weld J 40(7):159-s–167-s Cremers DA, Lewis GK, Korzekwa DR (1991) Measurement of energy deposition during pulsed laser welding. Weld J 40(7):159-s–167-s
26.
Zurück zum Zitat Rai R, Elmer JW, Palmer TA, DebRoy T (2007) Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti\(_6\)Al\(_4\)V, 304L stainless steel and vanadium. J Phys D Appl Phys 40:5753–5766CrossRef Rai R, Elmer JW, Palmer TA, DebRoy T (2007) Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti\(_6\)Al\(_4\)V, 304L stainless steel and vanadium. J Phys D Appl Phys 40:5753–5766CrossRef
28.
Zurück zum Zitat Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET, Salinger AG, Thornquist HK, Tuminaro RS, Willenbring JM, Williams A, Stanley KS (2005) An overview of the trilinos project. ACM Trans Math Softw 31(3):397–423MathSciNetCrossRefMATH Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET, Salinger AG, Thornquist HK, Tuminaro RS, Willenbring JM, Williams A, Stanley KS (2005) An overview of the trilinos project. ACM Trans Math Softw 31(3):397–423MathSciNetCrossRefMATH
29.
Zurück zum Zitat Prokopenko A, Siefert CM, Hu JJ, Hoemmen M, Klinvex A (2016) Ifpack2 users guide 1.0. Technical report SAND2016-5338, Sandia National Labs, 2016 Prokopenko A, Siefert CM, Hu JJ, Hoemmen M, Klinvex A (2016) Ifpack2 users guide 1.0. Technical report SAND2016-5338, Sandia National Labs, 2016
31.
Zurück zum Zitat Yadroitsev I, Gusarov A, Yadroitsava I, Smurov I (2010) Single track formation in selective laser melting of metal powders. J Mater Process Technol 210:1624–1631CrossRef Yadroitsev I, Gusarov A, Yadroitsava I, Smurov I (2010) Single track formation in selective laser melting of metal powders. J Mater Process Technol 210:1624–1631CrossRef
32.
Zurück zum Zitat Bristow DA, Tharayil M, Alleyne AG (2006) A survey of iterative learning control. IEEE Control Syst 26(3):96–114CrossRef Bristow DA, Tharayil M, Alleyne AG (2006) A survey of iterative learning control. IEEE Control Syst 26(3):96–114CrossRef
Metadaten
Titel
Heat transfer model and finite element formulation for simulation of selective laser melting
verfasst von
Souvik Roy
Mario Juha
Mark S. Shephard
Antoinette M. Maniatty
Publikationsdatum
27.10.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 3/2018
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-017-1496-y

Weitere Artikel der Ausgabe 3/2018

Computational Mechanics 3/2018 Zur Ausgabe

Neuer Inhalt