Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Dynamic Games and Applications 1/2022

05.03.2022

Herd Behaviors in Epidemics: A Dynamics-Coupled Evolutionary Games Approach

verfasst von: Shutian Liu, Yuhan Zhao, Quanyan Zhu

Erschienen in: Dynamic Games and Applications | Ausgabe 1/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

The recent COVID-19 pandemic has led to an increasing interest in the modeling and analysis of infectious diseases. The pandemic has made a significant impact on the way we behave and interact in our daily life. The past year has witnessed a strong interplay between human behaviors and epidemic spreading. In this paper, we propose an evolutionary game-theoretic framework to study the coupled evolution of herd behaviors and epidemics. Our framework extends the classical degree-based mean-field epidemic model over complex networks by coupling it with the evolutionary game dynamics. The statistically equivalent individuals in a population choose their social activity intensities based on the fitness or the payoffs that depend on the state of the epidemics. Meanwhile, the spreading of the infectious disease over the complex network is reciprocally influenced by the players’ social activities. We analyze the coupled dynamics by studying the stationary properties of the epidemic for a given herd behavior and the structural properties of the game for a given epidemic process. The decisions of the herd turn out to be strategic substitutes. We formulate an equivalent finite-player game and an equivalent network to represent the interactions among the finite populations. We develop a structure-preserving approximation technique to study time-dependent properties of the joint evolution of the behavioral and epidemic dynamics. The resemblance between the simulated coupled dynamics and the real COVID-19 statistics in the numerical experiments indicates the predictive power of our framework.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Başar T, Olsder GJ (1998) Dynamic noncooperative game theory. SIAM, New Delhi CrossRef Başar T, Olsder GJ (1998) Dynamic noncooperative game theory. SIAM, New Delhi CrossRef
4.
6.
Zurück zum Zitat Brunetti I, Hayel Y, Altman E (2018) State-policy dynamics in evolutionary games. Dyn Games Appl 8(1):93–116 MathSciNetCrossRef Brunetti I, Hayel Y, Altman E (2018) State-policy dynamics in evolutionary games. Dyn Games Appl 8(1):93–116 MathSciNetCrossRef
7.
Zurück zum Zitat Cardaliaguet P (2010) Notes on mean field games. Technical report Cardaliaguet P (2010) Notes on mean field games. Technical report
8.
Zurück zum Zitat Chen J, Huang Y, Zhang R, Zhu Q (2020) Optimal quarantining strategy for interdependent epidemics spreading over complex networks. arXiv:​2011.​14262 Chen J, Huang Y, Zhang R, Zhu Q (2020) Optimal quarantining strategy for interdependent epidemics spreading over complex networks. arXiv:​2011.​14262
9.
Zurück zum Zitat Como G, Fagnani F, Zino L (2020) Imitation dynamics in population games on community networks. IEEE Trans Control Netw Syst 8(1):65–76 MathSciNetCrossRef Como G, Fagnani F, Zino L (2020) Imitation dynamics in population games on community networks. IEEE Trans Control Netw Syst 8(1):65–76 MathSciNetCrossRef
10.
12.
Zurück zum Zitat Fu F, Rosenbloom DI, Wang L, Nowak MA (2011) Imitation dynamics of vaccination behaviour on social networks. Proc R Soc B Biol Sci 278(1702):42–49 CrossRef Fu F, Rosenbloom DI, Wang L, Nowak MA (2011) Imitation dynamics of vaccination behaviour on social networks. Proc R Soc B Biol Sci 278(1702):42–49 CrossRef
15.
Zurück zum Zitat Grammatico S (2017) Dynamic control of agents playing aggregative games with coupling constraints. IEEE Trans Autom Control 62(9):4537–4548 MathSciNetCrossRef Grammatico S (2017) Dynamic control of agents playing aggregative games with coupling constraints. IEEE Trans Autom Control 62(9):4537–4548 MathSciNetCrossRef
16.
Zurück zum Zitat Gubar E, Zhu Q, Taynitskiy V (2017) Optimal control of multi-strain epidemic processes in complex networks. In: International conference on game theory for networks. Springer, pp 108–117 Gubar E, Zhu Q, Taynitskiy V (2017) Optimal control of multi-strain epidemic processes in complex networks. In: International conference on game theory for networks. Springer, pp 108–117
17.
Zurück zum Zitat Hayel Y, Zhu Q (2017) Epidemic protection over heterogeneous networks using evolutionary poisson games. IEEE Trans Inf Forensics Secur 12(8):1786–1800 CrossRef Hayel Y, Zhu Q (2017) Epidemic protection over heterogeneous networks using evolutionary poisson games. IEEE Trans Inf Forensics Secur 12(8):1786–1800 CrossRef
19.
Zurück zum Zitat Huang M, Caines PE, Malhamé RP (2007) Large-population cost-coupled lqg problems with nonuniform agents: individual-mass behavior and decentralized \(\varepsilon \)-nash equilibria. IEEE Trans Autom Control 52(9):1560–1571 MathSciNetCrossRef Huang M, Caines PE, Malhamé RP (2007) Large-population cost-coupled lqg problems with nonuniform agents: individual-mass behavior and decentralized \(\varepsilon \)-nash equilibria. IEEE Trans Autom Control 52(9):1560–1571 MathSciNetCrossRef
21.
Zurück zum Zitat Jiang C, Chen Y, Liu KR (2014) Graphical evolutionary game for information diffusion over social networks. IEEE J Sel Top Signal Process 8(4):524–536 CrossRef Jiang C, Chen Y, Liu KR (2014) Graphical evolutionary game for information diffusion over social networks. IEEE J Sel Top Signal Process 8(4):524–536 CrossRef
24.
Zurück zum Zitat Martcheva M, Tuncer N, Ngonghala CN (2021) Effects of social-distancing on infectious disease dynamics: an evolutionary game theory and economic perspective. J Biol Dyn 15(1):342–366 MathSciNetCrossRef Martcheva M, Tuncer N, Ngonghala CN (2021) Effects of social-distancing on infectious disease dynamics: an evolutionary game theory and economic perspective. J Biol Dyn 15(1):342–366 MathSciNetCrossRef
26.
Zurück zum Zitat Milgrom P, Roberts J (1990) Rationalizability, learning, and equilibrium in games with strategic complementarities. Econometrica 58(6):1255–1277 MathSciNetCrossRef Milgrom P, Roberts J (1990) Rationalizability, learning, and equilibrium in games with strategic complementarities. Econometrica 58(6):1255–1277 MathSciNetCrossRef
27.
28.
Zurück zum Zitat Parise F, Gentile B, Grammatico S, Lygeros J (2015) Network aggregative games: distributed convergence to nash equilibria. In: 2015 54th IEEE conference on decision and control (CDC). IEEE, pp 2295–2300 Parise F, Gentile B, Grammatico S, Lygeros J (2015) Network aggregative games: distributed convergence to nash equilibria. In: 2015 54th IEEE conference on decision and control (CDC). IEEE, pp 2295–2300
29.
Zurück zum Zitat Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A (2015) Epidemic processes in complex networks. Rev Mod Phys 87(3):925 MathSciNetCrossRef Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A (2015) Epidemic processes in complex networks. Rev Mod Phys 87(3):925 MathSciNetCrossRef
32.
33.
Zurück zum Zitat Ruszczynski A (2011) Nonlinear optimization. Princeton University Press, Princeton CrossRef Ruszczynski A (2011) Nonlinear optimization. Princeton University Press, Princeton CrossRef
34.
Zurück zum Zitat Sandholm WH (2010) Population games and evolutionary dynamics. MIT press, New York MATH Sandholm WH (2010) Population games and evolutionary dynamics. MIT press, New York MATH
35.
Zurück zum Zitat Scharfstein DS, Stein JC (1990) Herd behavior and investment. Am Econ Rev 465–479 Scharfstein DS, Stein JC (1990) Herd behavior and investment. Am Econ Rev 465–479
36.
Zurück zum Zitat Smith JM, Price GR (1973) The logic of animal conflict. Nature 246(5427):15–18 CrossRef Smith JM, Price GR (1973) The logic of animal conflict. Nature 246(5427):15–18 CrossRef
37.
Zurück zum Zitat Stella L, Bauso D, Colaneri P (2021) Mean-field game for collective decision-making in honeybees via switched systems. IEEE Trans Autom Control Stella L, Bauso D, Colaneri P (2021) Mean-field game for collective decision-making in honeybees via switched systems. IEEE Trans Autom Control
40.
Zurück zum Zitat Tembine H, Altman E, El-Azouzi R, Hayel Y (2009) Evolutionary games in wireless networks. IEEE Trans Syst Man Cybern Part B (Cybern) 40(3):634–646 CrossRef Tembine H, Altman E, El-Azouzi R, Hayel Y (2009) Evolutionary games in wireless networks. IEEE Trans Syst Man Cybern Part B (Cybern) 40(3):634–646 CrossRef
41.
Zurück zum Zitat Tembine H, Le Boudec,JY, El-Azouzi R, Altman E (2009) Mean field asymptotics of Markov Decision evolutionary games and teams. In: 2009 international conference on game theory for networks, pp 140–150.IEEE Tembine H, Le Boudec,JY, El-Azouzi R, Altman E (2009) Mean field asymptotics of Markov Decision evolutionary games and teams. In: 2009 international conference on game theory for networks, pp 140–150.IEEE
43.
Zurück zum Zitat Topkis DM (1979) Equilibrium points in nonzero-sum n-person submodular games. SIAM J Control Optim 17(6):773–787 MathSciNetCrossRef Topkis DM (1979) Equilibrium points in nonzero-sum n-person submodular games. SIAM J Control Optim 17(6):773–787 MathSciNetCrossRef
Metadaten
Titel
Herd Behaviors in Epidemics: A Dynamics-Coupled Evolutionary Games Approach
verfasst von
Shutian Liu
Yuhan Zhao
Quanyan Zhu
Publikationsdatum
05.03.2022
Verlag
Springer US
Erschienen in
Dynamic Games and Applications / Ausgabe 1/2022
Print ISSN: 2153-0785
Elektronische ISSN: 2153-0793
DOI
https://doi.org/10.1007/s13235-022-00433-3

Weitere Artikel der Ausgabe 1/2022

Dynamic Games and Applications 1/2022 Zur Ausgabe

Premium Partner