Skip to main content

1997 | OriginalPaper | Buchkapitel

Heteroskedasticity and Autocorrelation Robust Estimation of Variance Covariance Matrices

verfasst von : Professor Benedikt M. Pötscher, Professor Ingmar R. Prucha

Erschienen in: Dynamic Nonlinear Econometric Models

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Inspection of the asymptotic normality results for least mean distance and generalized method of moments estimators given in, e.g., Theorems 11.2(a) and 11.5(a) shows that in both cases a matrix of the form $$C_n^{ - 1}{D_n}{D'_n}C_n^{ - 1'}$$ acts as an asymptotic variance covariance matrix of $${n^{1/2}}\left( {{{\hat \beta }_n} - {{\hat \beta }_n}} \right)$$ , where C n and D n are given in those theorems. For purposes of inference we need estimators of C n and D n . Inspection of the matrices C n reveals that these matrices are essentially composed of terms of the form $${n^{ - 1}}\sum\nolimits_{t = 1}^n {E{w_{t,n}}} $$ , where $${w_{t,n}} = {w_t}\left( {{{\bar \tau }_n},{{\bar \beta }_n}} \right)$$ equals $${\nabla _{\beta \beta qt}}\left( {{z_t},{{\bar \tau }_n},{{\bar \beta }_n}} \right)$$ in the case of least mean distance estimators or equals $${\nabla _{\beta qt}}\left( {{z_t},{{\bar \tau }_n},{{\bar \beta }_n}} \right)$$ in the case of generalized method of moments estimators. The matrices D n — apart from containing similar terms — also contain an expression of the form $${n^{ - 1}}E\left[ {\left( {\sum\limits_{t = 1}^n {{V_{t,n}}} } \right)\left( {\sum\limits_{t = 1}^n {{{v'}_{i,n}}} } \right)} \right],$$ where $${v_{t,n}} = {v_t}\left( {{{\bar \tau }_n},{{\bar \beta }_n}} \right)$$ equals $$\nabla \beta 'qt\left( {{z_t},{{\overline \tau }_n},{{\overline \beta }_n}} \right)$$ in the case of least mean distance estimators or equals $${q_t}\left( {{z_t},{{\bar \tau }_n},{{\bar \beta }_n}} \right)$$ in the case of generalized method of moments estimators. The expressions of the form $${n^{ - 1}}\sum\nolimits_{t = 1}^n {E{w_{t,n}}} $$ will typically be estimated by $${n^{ - 1}}\sum\nolimits_{t = 1}^n {{{\hat w}_{t,n}}} $$ where $${\hat w_{t,n}} = {w_t}\left( {{{\hat \tau }_n},{{\hat \beta }_n}} \right)$$ . Consistency of such estimators can be derived from ULLNs and from consistency of $$\left( {{{\hat \tau }_n},{{\hat \beta }_n}} \right)$$ in a rather straightforward manner via Lemma 3.2.1 The estimation of $${\Psi _n} = {n^{ - 1}}\sum\limits_{t = 1}^n {E{v_{t,n}}{{v'}_{t,n}}j = \sum\limits_{j = 1}^{n - 1} {{n^{ - 1}}} \sum\limits_{t = 1}^{n - j} {\left[ {E{v_{t,n}}{{v'}_{t + j,n}} + E{v_{t = j,n}}v't,n} \right]} } $$ reduces to a similar problem in the important special case where (vt,n) is a martingale difference array (or, more generally is uncorrelated and has mean zero), since then the expression for Ψ n reduces to $${n^{ - 1}}\sum\nolimits_{t = 1}^n {E{v_{t,n}}{{v'}_{t,n}}} $$ . As discussed above (v t,n ) will have a martingale difference structure in certain correctly specified cases. In the general case, however, (v t,n ) will typically be autocorrelated (with autocorrelation of unknown form) and hence the estimation of Ψ n is more involved.

Metadaten
Titel
Heteroskedasticity and Autocorrelation Robust Estimation of Variance Covariance Matrices
verfasst von
Professor Benedikt M. Pötscher
Professor Ingmar R. Prucha
Copyright-Jahr
1997
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-03486-6_12