Skip to main content

2024 | OriginalPaper | Buchkapitel

Heuristic Learning Model-Based Stochastic Regularization Technique for Reducing the Overfit of Training Data

verfasst von : P. S. Metkewar, Rajesh Kumar Dhanaraj

Erschienen in: Proceedings of Third International Conference on Computing and Communication Networks

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Researchers may have learned about how to build and develop feedforward neural networks. The moment we develop a network, there is the question of training and testing the dataset along with the machine learning algorithm. We have to test our algorithm not only on the training set but also on the testing set with respect to its fit. When an algorithm performs well on the training set but performs poorly on the testing set, the algorithm is said to be overfitted on the training data. In short, there is a need to focus on reducing the overfitting. To deal with this problem, we have to make our stochastic model generalize over the training data using the emphasized regularization technique. Here, the term stochastic means the outcome derived from a random event or random process; the terms referred to as “Stochastic” and Regularization mean minimizing the error of the testing set directly proportional to increasing the error rate of the training set. Many such regularization techniques are invented by the research practitioner, but minimal evidence has been observed through types of learning rules. So to come up with a more effective regularization technique is the need of the hour. In order to achieve this, there needs to be put some extra constraints, parameter-specific values, changes in learning rate, and changes in activation function; into the machine learning model. If it is computed and chosen correctly, then it helps to reduce testing error. Finally in order to develop such a machine learning model; researchers have to look into the strengths and weaknesses of the model, new or derived theory, synthesis of existing theory along with the support of other derived theories and the gaps to come up with new models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Jaiswal, S., Mehta, A., Nandi, G.C.: Investigation on the effect of L1 an L2 regularization on image features extracted using restricted boltzmann machine. In: 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, pp. 1548–1553 (2018). https://doi.org/10.1109/ICCONS.2018.8663071 Jaiswal, S., Mehta, A., Nandi, G.C.: Investigation on the effect of L1 an L2 regularization on image features extracted using restricted boltzmann machine. In: 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, pp. 1548–1553 (2018). https://​doi.​org/​10.​1109/​ICCONS.​2018.​8663071
5.
Zurück zum Zitat Azizan, N., Lale, S., Hassibi, B.: A study of generalization of stochastic mirror descent algorithms on overparameterized nonlinear models. In: ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, pp. 3132–3136 (2020). https://doi.org/10.1109/ICASSP40776.2020.9053864 Azizan, N., Lale, S., Hassibi, B.: A study of generalization of stochastic mirror descent algorithms on overparameterized nonlinear models. In: ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, pp. 3132–3136 (2020). https://​doi.​org/​10.​1109/​ICASSP40776.​2020.​9053864
7.
Zurück zum Zitat Zanderigo, F., Bertoldo, A., Pillonetto, G., Cobelli, C.: Nonlinear stochastic regularization to characterize tissue residue function in bolus-tracking MRI: assessment and comparison with SVD, block-circulant SVD, and Tikhonov. IEEE Trans. Biomed. Eng. 56(5), 1287–1297 (2009). https://doi.org/10.1109/TBME.2009.2013820 Zanderigo, F., Bertoldo, A., Pillonetto, G., Cobelli, C.: Nonlinear stochastic regularization to characterize tissue residue function in bolus-tracking MRI: assessment and comparison with SVD, block-circulant SVD, and Tikhonov. IEEE Trans. Biomed. Eng. 56(5), 1287–1297 (2009). https://​doi.​org/​10.​1109/​TBME.​2009.​2013820
8.
Zurück zum Zitat Wu, Y., Zhang, L.: A new regularization learning method for improving generalization capability of neural network. In: Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No. 02EX527), Shanghai, China, vol. 3, pp. 2011–2015 (2002). https://doi.org/10.1109/WCICA.2002.1021438 Wu, Y., Zhang, L.: A new regularization learning method for improving generalization capability of neural network. In: Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No. 02EX527), Shanghai, China, vol. 3, pp. 2011–2015 (2002). https://​doi.​org/​10.​1109/​WCICA.​2002.​1021438
9.
Zurück zum Zitat Wu, Y., Zhang, L.: A novel neural network learning method for dynamically tuning regularization coefficient. In: 2001 International Conferences on Info-Tech and Info-Net. Proceedings (Cat. No. 01EX479), Beijing, China, vol. 3, pp. 516–522 (2001). https://doi.org/10.1109/ICII.2001.983109 Wu, Y., Zhang, L.: A novel neural network learning method for dynamically tuning regularization coefficient. In: 2001 International Conferences on Info-Tech and Info-Net. Proceedings (Cat. No. 01EX479), Beijing, China, vol. 3, pp. 516–522 (2001). https://​doi.​org/​10.​1109/​ICII.​2001.​983109
12.
Zurück zum Zitat Barbuzzi, D., Pirlo, G., Uchida, S., Frinken, V., Impedovo, D.: Similarity-based regularization for semi-supervised learning for handwritten digit recognition. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), Tunis, Tunisia, pp. 101–105 (2015). https://doi.org/10.1109/ICDAR.2015.7333734 Barbuzzi, D., Pirlo, G., Uchida, S., Frinken, V., Impedovo, D.: Similarity-based regularization for semi-supervised learning for handwritten digit recognition. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), Tunis, Tunisia, pp. 101–105 (2015). https://​doi.​org/​10.​1109/​ICDAR.​2015.​7333734
14.
Zurück zum Zitat Shen, B., Liu, B.-D., Wang, Q., Ji, R.: Robust nonnegative matrix factorization via L1 norm regularization by multiplicative updating rules. In: 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, pp. 5282–5286 (2014). https://doi.org/10.1109/ICIP.2014.7026069 Shen, B., Liu, B.-D., Wang, Q., Ji, R.: Robust nonnegative matrix factorization via L1 norm regularization by multiplicative updating rules. In: 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, pp. 5282–5286 (2014). https://​doi.​org/​10.​1109/​ICIP.​2014.​7026069
Metadaten
Titel
Heuristic Learning Model-Based Stochastic Regularization Technique for Reducing the Overfit of Training Data
verfasst von
P. S. Metkewar
Rajesh Kumar Dhanaraj
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_26