Skip to main content
Erschienen in: Wireless Personal Communications 3/2020

23.05.2020

Heuristic Relay-Node Selection in Opportunistic Network Using RNN-LSTM Based Mobility Prediction

verfasst von: C. P. Koushik, P. Vetrivelan

Erschienen in: Wireless Personal Communications | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A Mobile Ad hoc Network (MANET) is a network composed of numerous autonomous mobile nodes. In recent times, the opportunistic network, a type of MANET is gaining a lot of significance among the researchers, as it is capable of communicating with the sink node through an efficient selection of relay nodes. In the opportunistic networks, the node does not seek any knowledge about the network topology as it selects the efficacious relay node for transmission of packets. However, MANET requires nodal information about network topology. In the opportunistic network, the data stockpiled in the packets are transmitted from a source node to a sink node by utilizing relay node opportunistically for every hop. However, this type of communication leads to delayed data delivery with increased hops as a consequence of the unsystematic selection of relay nodes. To overcome these constraints, this article focuses on the selection of optimal relay nodes for attaining faster data delivery, by unveiling the location and by predicting the mobility pattern of the neighbor nodes. Hence, this research paper proposes Particle Swarm Optimization algorithm for the selection of optimal relay nodes by locating the neighbor nodes within an established Inter-Communication Range employing Cartesian based localization technique and by analyzing their mobility pattern using recurrent neural network-long short-term memory prediction model. The results of the proposed methodology are compared with four other existing methods, namely, MaxProp, Spray and Wait, and Epidemic. The comparative results infer that the proposed method is efficient in terms of performance, reduced hops, reduced delay with enhanced packet delivery ratio, and improved overhead ratio.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Delkesh, T., & Jamali, M. A. J. (2019). EAODV: Detection and removal of multiple black hole attacks through sending forged packets in MANETs. Journal of Ambient Intelligence and Humanized Computing, 10(5), 1897–1914.CrossRef Delkesh, T., & Jamali, M. A. J. (2019). EAODV: Detection and removal of multiple black hole attacks through sending forged packets in MANETs. Journal of Ambient Intelligence and Humanized Computing, 10(5), 1897–1914.CrossRef
2.
Zurück zum Zitat Pelusi, L., Passarella, A., & Conti, M. (2006). Opportunistic networking: Data forwarding in disconnected mobile ad hoc networks. IEEE Communications Magazine, 44(11), 134–141.CrossRef Pelusi, L., Passarella, A., & Conti, M. (2006). Opportunistic networking: Data forwarding in disconnected mobile ad hoc networks. IEEE Communications Magazine, 44(11), 134–141.CrossRef
3.
Zurück zum Zitat Huang, C. M., Lan, K. C., & Tsai, C. Z. (2008). A survey of opportunistic networks. In 22nd International conference on advanced information networking and applications-workshops (aina workshops 2008) (pp. 1672–1677). IEEE. Huang, C. M., Lan, K. C., & Tsai, C. Z. (2008). A survey of opportunistic networks. In 22nd International conference on advanced information networking and applications-workshops (aina workshops 2008) (pp. 1672–1677). IEEE.
4.
Zurück zum Zitat Kuriakose, J., Joshi, S., & George, V. I. (2014). Localization in wireless sensor networks: a survey. In International conference on information communication and embedded system (ICICE2014). Kuriakose, J., Joshi, S., & George, V. I. (2014). Localization in wireless sensor networks: a survey. In International conference on information communication and embedded system (ICICE2014).
5.
Zurück zum Zitat Hu, L., & Evans, D. (2004). Localization for mobile sensor networks. In Proceedings of the 10th annual international conference on Mobile computing and networking (pp. 45–57). ACM. Hu, L., & Evans, D. (2004). Localization for mobile sensor networks. In Proceedings of the 10th annual international conference on Mobile computing and networking (pp. 45–57). ACM.
6.
Zurück zum Zitat Venkatesan Theerthagiri, P., & Menakadevi, T. (2019). FMPM FMPM: futuristic mobility prediction model for mobile adhoc networks using auto-regressive integrated moving average. Acta Graphica, 29(2), 7–17.CrossRef Venkatesan Theerthagiri, P., & Menakadevi, T. (2019). FMPM FMPM: futuristic mobility prediction model for mobile adhoc networks using auto-regressive integrated moving average. Acta Graphica, 29(2), 7–17.CrossRef
7.
Zurück zum Zitat Ghouti, L. (2016). Mobility prediction in mobile ad hoc networks using neural learning machines. Simulation Modelling Practice and Theory, 66, 104–121.CrossRef Ghouti, L. (2016). Mobility prediction in mobile ad hoc networks using neural learning machines. Simulation Modelling Practice and Theory, 66, 104–121.CrossRef
8.
Zurück zum Zitat Yang, H., Li, Z., & Liu, Z. (2019). A method of routing optimization using CHNN in MANET. Journal of Ambient Intelligence and Humanized Computing, 10(5), 1759–1768.CrossRef Yang, H., Li, Z., & Liu, Z. (2019). A method of routing optimization using CHNN in MANET. Journal of Ambient Intelligence and Humanized Computing, 10(5), 1759–1768.CrossRef
9.
Zurück zum Zitat Chirdchoo, N., Soh, W. S., & Chua, K. C. (2009). Sector-based routing with destination location prediction for underwater mobile networks. In 2009 International Conference on Advanced Information Networking and Applications Workshops (pp. 1148–1153). IEEE. Chirdchoo, N., Soh, W. S., & Chua, K. C. (2009). Sector-based routing with destination location prediction for underwater mobile networks. In 2009 International Conference on Advanced Information Networking and Applications Workshops (pp. 1148–1153). IEEE.
10.
Zurück zum Zitat Shin, D., Hwang, D., & Kim, D. (2012). DFR: an efficient directional flooding-based routing protocol in underwater sensor networks. Wireless Communications and Mobile Computing, 12(17), 1517–1527.CrossRef Shin, D., Hwang, D., & Kim, D. (2012). DFR: an efficient directional flooding-based routing protocol in underwater sensor networks. Wireless Communications and Mobile Computing, 12(17), 1517–1527.CrossRef
11.
Zurück zum Zitat Uchiyama, A., Fujii, S., Maeda, K., Umedu, T., Yamaguchi, H., & Higashino, T. (2012). UPL: Opportunistic localization in urban districts. IEEE Transactions on Mobile Computing, 12(5), 1009–1022.CrossRef Uchiyama, A., Fujii, S., Maeda, K., Umedu, T., Yamaguchi, H., & Higashino, T. (2012). UPL: Opportunistic localization in urban districts. IEEE Transactions on Mobile Computing, 12(5), 1009–1022.CrossRef
12.
Zurück zum Zitat Misra, S., Ojha, T., & Mondal, A. (2014). Game-theoretic topology controlfor opportunistic localization in sparse underwater sensor networks. IEEE Transactions on Mobile Computing, 14(5), 990–1003.CrossRef Misra, S., Ojha, T., & Mondal, A. (2014). Game-theoretic topology controlfor opportunistic localization in sparse underwater sensor networks. IEEE Transactions on Mobile Computing, 14(5), 990–1003.CrossRef
13.
Zurück zum Zitat Zaidi, S., El Assaf, A., Affes, S., & Kandil, N. (2016). Accurate range-free localization in multi-hop wireless sensor networks. IEEE Transactions on Communications, 64(9), 3886–3900.CrossRef Zaidi, S., El Assaf, A., Affes, S., & Kandil, N. (2016). Accurate range-free localization in multi-hop wireless sensor networks. IEEE Transactions on Communications, 64(9), 3886–3900.CrossRef
15.
Zurück zum Zitat Rozner, E., Seshadri, J., Mehta, Y., & Qiu, L. (2009). SOAR: Simple opportunistic adaptive routing protocol for wireless mesh networks. IEEE Transactions on Mobile Computing, 8(12), 1622–1635.CrossRef Rozner, E., Seshadri, J., Mehta, Y., & Qiu, L. (2009). SOAR: Simple opportunistic adaptive routing protocol for wireless mesh networks. IEEE Transactions on Mobile Computing, 8(12), 1622–1635.CrossRef
16.
Zurück zum Zitat Ramya, L. P., & Selvan, (2015). Mobility prediction and forwarding routing in delay tolerant networks. Middle-East Journal of Scientific Research, 23, 297–304. Ramya, L. P., & Selvan, (2015). Mobility prediction and forwarding routing in delay tolerant networks. Middle-East Journal of Scientific Research, 23, 297–304.
17.
Zurück zum Zitat Kafaie, S., Chen, Y., Dobre, O. A., & Ahmed, M. H. (2018). Joint inter-flow network coding and opportunistic routing in multi-hop wireless mesh networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 20(2), 1014–1035.CrossRef Kafaie, S., Chen, Y., Dobre, O. A., & Ahmed, M. H. (2018). Joint inter-flow network coding and opportunistic routing in multi-hop wireless mesh networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 20(2), 1014–1035.CrossRef
18.
Zurück zum Zitat Bansal, S., Sivia, J. S., & Bindra, H. S. (2019). Design, implementation and analysis of routing based attack model for delay tolerant networks for prophet routing protocol. International Journal of Sensor Networks, 31(4), 238–252.CrossRef Bansal, S., Sivia, J. S., & Bindra, H. S. (2019). Design, implementation and analysis of routing based attack model for delay tolerant networks for prophet routing protocol. International Journal of Sensor Networks, 31(4), 238–252.CrossRef
19.
Zurück zum Zitat Hui, P., Crowcroft, J., & Yoneki, E. (2010). Bubble Rap: Social-based forwarding in delay-tolerant networks. IEEE Transactions on Mobile Computing, 10(11), 1576–1589.CrossRef Hui, P., Crowcroft, J., & Yoneki, E. (2010). Bubble Rap: Social-based forwarding in delay-tolerant networks. IEEE Transactions on Mobile Computing, 10(11), 1576–1589.CrossRef
20.
Zurück zum Zitat Kaaniche, H., & Kamoun, F. (2010). Mobility prediction in wireless ad hoc networks using neural networks. arXiv preprint arXiv:1004.4610. Kaaniche, H., & Kamoun, F. (2010). Mobility prediction in wireless ad hoc networks using neural networks. arXiv preprint arXiv:​1004.​4610.
21.
Zurück zum Zitat Chen, Q., Kanhere, S. S., & Hassan, M. (2012). Adaptive position update for geographic routing in mobile ad hoc networks. IEEE Transactions on Mobile Computing, 12(3), 489–501.CrossRef Chen, Q., Kanhere, S. S., & Hassan, M. (2012). Adaptive position update for geographic routing in mobile ad hoc networks. IEEE Transactions on Mobile Computing, 12(3), 489–501.CrossRef
22.
Zurück zum Zitat Seema, R., & Ajay, D. (2014). Survey on mobility prediction schemes in MANET with clustering techniques. Journal of Advanced Research in Computer Engineering & Technology, 3(6), 2131–2134. Seema, R., & Ajay, D. (2014). Survey on mobility prediction schemes in MANET with clustering techniques. Journal of Advanced Research in Computer Engineering & Technology, 3(6), 2131–2134.
23.
Zurück zum Zitat Suraj, R., Tapaswi, S., Yousef, S., Pattanaik, K. K., & Cole, M. (2015). Mobility prediction in mobile adhoc networks using a lightweight genetic algorithm. Wireless Networks, 22, 1–10.CrossRef Suraj, R., Tapaswi, S., Yousef, S., Pattanaik, K. K., & Cole, M. (2015). Mobility prediction in mobile adhoc networks using a lightweight genetic algorithm. Wireless Networks, 22, 1–10.CrossRef
24.
Zurück zum Zitat Leng, J., & Jiang, P. (2016). A deep learning approach for relationship extraction from interaction context in social manufacturing paradigm. Knowledge-Based Systems, 100, 188–199.CrossRef Leng, J., & Jiang, P. (2016). A deep learning approach for relationship extraction from interaction context in social manufacturing paradigm. Knowledge-Based Systems, 100, 188–199.CrossRef
25.
Zurück zum Zitat Leng, J., Chen, Q., Mao, N., & Jiang, P. (2018). Combining granular computing technique with deep learning for service planning under social manufacturing contexts. Knowledge-Based Systems, 143, 295–306.CrossRef Leng, J., Chen, Q., Mao, N., & Jiang, P. (2018). Combining granular computing technique with deep learning for service planning under social manufacturing contexts. Knowledge-Based Systems, 143, 295–306.CrossRef
26.
Zurück zum Zitat Xue, J., Li, J., Cao, Y., & Fang, J. (2009). Advanced PROPHET routing in delay tolerant network. In International Conference on Communication Software and Networks (pp. 411–413). IEEE. Xue, J., Li, J., Cao, Y., & Fang, J. (2009). Advanced PROPHET routing in delay tolerant network. In International Conference on Communication Software and Networks (pp. 411–413). IEEE.
27.
Zurück zum Zitat Nasab, A. S., Derhami, V., Khanli, L. M., & Bidoki, A. M. Z. (2012). Energy-aware multicast routing in manet based on particle swarm optimization. Procedia Technology, 1, 434–438.CrossRef Nasab, A. S., Derhami, V., Khanli, L. M., & Bidoki, A. M. Z. (2012). Energy-aware multicast routing in manet based on particle swarm optimization. Procedia Technology, 1, 434–438.CrossRef
28.
29.
Zurück zum Zitat Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2013). Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17–35.CrossRef Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2013). Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17–35.CrossRef
30.
Zurück zum Zitat Gaur, Priti. (2013). An efficient routing implementation using genetic algorithm. Journal of Computer Science and Information Technology, 2(7), 250–257. Gaur, Priti. (2013). An efficient routing implementation using genetic algorithm. Journal of Computer Science and Information Technology, 2(7), 250–257.
31.
Zurück zum Zitat Biradar, A., & Thool, R. C. (2014). Reliable genetic algorithm based intelligent routing for MANET. In 2014 World Congress on Computer Applications and Information Systems, WCCAIS 2014. Institute of Electrical and Electronics Engineers Inc. Biradar, A., & Thool, R. C. (2014). Reliable genetic algorithm based intelligent routing for MANET. In 2014 World Congress on Computer Applications and Information Systems, WCCAIS 2014. Institute of Electrical and Electronics Engineers Inc.
32.
Zurück zum Zitat He, X. S., Ding, W. J., & Yang, X. S. (2014). Bat algorithm based on simulated annealing and Gaussian perturbations. Neural Computing and Applications, 25(2), 459–468.CrossRef He, X. S., Ding, W. J., & Yang, X. S. (2014). Bat algorithm based on simulated annealing and Gaussian perturbations. Neural Computing and Applications, 25(2), 459–468.CrossRef
33.
Zurück zum Zitat Pardeep, K., & Kaur, Surinder. (2014). Use of Hybrid GA and PSO for Routing Optimization in MANET. Journal of Advanced Research in Computer Science and Software Engineering, 4(7), 52–60. Pardeep, K., & Kaur, Surinder. (2014). Use of Hybrid GA and PSO for Routing Optimization in MANET. Journal of Advanced Research in Computer Science and Software Engineering, 4(7), 52–60.
34.
Zurück zum Zitat Robinson, Y. H., & Rajaram, M. (2015). Energy-aware multipath routing scheme based on particle swarm optimization in mobile ad hoc networks. The Scientific World Journal, 2015, 1.CrossRef Robinson, Y. H., & Rajaram, M. (2015). Energy-aware multipath routing scheme based on particle swarm optimization in mobile ad hoc networks. The Scientific World Journal, 2015, 1.CrossRef
35.
Zurück zum Zitat Rajan, C., & Shanthi, N. (2015). Genetic based optimization for multicast routing algorithm for MANET. Indian Academy of Sciences, 40(8), 2341–2352.MathSciNet Rajan, C., & Shanthi, N. (2015). Genetic based optimization for multicast routing algorithm for MANET. Indian Academy of Sciences, 40(8), 2341–2352.MathSciNet
36.
Zurück zum Zitat Koushik, C. P., & Vetrivelan, P. (2019). Gradient-based localization and relay nodes selection in delay tolerant mobile opportunistic networks for emergency rescue. In Wireless Communication Networks and the Internet of Things (pp. 21–32). Singapore: Springer. Koushik, C. P., & Vetrivelan, P. (2019). Gradient-based localization and relay nodes selection in delay tolerant mobile opportunistic networks for emergency rescue. In Wireless Communication Networks and the Internet of Things (pp. 21–32). Singapore: Springer.
37.
Zurück zum Zitat Papaj, J., & Doboš, Ľ. (2014). Trust based algorithm for candidate node selection in hybrid MANET-DTN. Advances in Electrical and Electronic Engineering, 12(4), 271–278.CrossRef Papaj, J., & Doboš, Ľ. (2014). Trust based algorithm for candidate node selection in hybrid MANET-DTN. Advances in Electrical and Electronic Engineering, 12(4), 271–278.CrossRef
38.
Zurück zum Zitat Goldbarg, E. F., Goldbarg, M. C., & de Souza, G. R. (2008). Particle swarm optimization algorithm for the traveling salesman problem. Traveling Salesman Problem, 1, 75–96. Goldbarg, E. F., Goldbarg, M. C., & de Souza, G. R. (2008). Particle swarm optimization algorithm for the traveling salesman problem. Traveling Salesman Problem, 1, 75–96.
39.
Zurück zum Zitat Rani, A., Rani, S., & Bindra, H. S. (2014). Performance Evaluation of MaxProp Routing Protocol with DL, FIFO, DLA and MOFO Buffer Management Techniques in DTN under Variable Message Buffer Size. IJERT, ISSN, 2278-0181. Rani, A., Rani, S., & Bindra, H. S. (2014). Performance Evaluation of MaxProp Routing Protocol with DL, FIFO, DLA and MOFO Buffer Management Techniques in DTN under Variable Message Buffer Size. IJERT, ISSN, 2278-0181.
40.
Zurück zum Zitat Pan, D., Lin, M., Chen, L., & Sun, J. (2012). An improved spray and wait with probability choice routing for opportunistic networks. Journal of networks, 7(9), 1486.CrossRef Pan, D., Lin, M., Chen, L., & Sun, J. (2012). An improved spray and wait with probability choice routing for opportunistic networks. Journal of networks, 7(9), 1486.CrossRef
41.
Zurück zum Zitat Zhang, F., Wang, X., Zhang, L., Li, P., Wang, L., & Yu, W. (2017). Dynamic adjustment strategy of n-epidemic routing protocol for opportunistic networks: A learning automata approach. TIIS, 11(4), 2020–2037. Zhang, F., Wang, X., Zhang, L., Li, P., Wang, L., & Yu, W. (2017). Dynamic adjustment strategy of n-epidemic routing protocol for opportunistic networks: A learning automata approach. TIIS, 11(4), 2020–2037.
Metadaten
Titel
Heuristic Relay-Node Selection in Opportunistic Network Using RNN-LSTM Based Mobility Prediction
verfasst von
C. P. Koushik
P. Vetrivelan
Publikationsdatum
23.05.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07480-2

Weitere Artikel der Ausgabe 3/2020

Wireless Personal Communications 3/2020 Zur Ausgabe

Neuer Inhalt