Skip to main content

07.01.2025 | Connected Automated Vehicles and ITS, Electric, Fuel Cell, and Hybrid Vehicle, Vehicle Dynamics and Control

Hierarchical Control for PHEV Platoon Based on Multi-information Fusion Speed Prediction

verfasst von: Yanli Yin, Haixin Chen, Fuchun Zhang, Fuzhen Wang, Hangyang Xiao

Erschienen in: International Journal of Automotive Technology

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To address the issues of speed planning and driving condition adaptability in the platoon operation of plug-in hybrid electric vehicles (PHEVs), a hierarchical control strategy for platooning based on multi-information-fused speed prediction is proposed. First, historical time series data from VISSIM is used to predict the speed of the lead vehicle in the platoon with a Long Short-Term Memory (LSTM) neural network. Second, the upper controller employs vehicle-to-vehicle (V2V) communication to obtain information about preceding vehicles and determines the optimal following speed using the Linear Model Predictive Control (LMPC) algorithm. Then, the lower controller applies Principal Component Analysis (PCA) and K-means clustering to establish four typical operating conditions, training an offline Deep Q-Learning (DQL) network and condition recognition model for each, enabling adaptive energy management. Finally, the results show that the LSTM model improves prediction accuracy by 28.51% over the Recurrent Neural Network (RNN). Compared to the baseline CD-CS strategy, the DQL strategy achieves a 20.31% reduction in fuel consumption per 100 km, while the proposed adaptive condition recognition-based energy management strategy (A-DQL) reduces fuel consumption by 22.51%, demonstrating improved fuel economy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Balador, A., Bazzi, A., de la Hernandez-Jayo, U., Iglesia, I., & Ahmadvand, H. (2022). A survey on vehicular communication for cooperative truck platooning application. Vehicular Communications, 35, 100460.CrossRef Balador, A., Bazzi, A., de la Hernandez-Jayo, U., Iglesia, I., & Ahmadvand, H. (2022). A survey on vehicular communication for cooperative truck platooning application. Vehicular Communications, 35, 100460.CrossRef
Zurück zum Zitat Benninger, L. Gehring, O., & Sawodny, O. (2022). Real-time vehicle speed prediction based on traffic information services. In 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 1652–1657). IEEE. Benninger, L. Gehring, O., & Sawodny, O. (2022). Real-time vehicle speed prediction based on traffic information services. In 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 1652–1657). IEEE.
Zurück zum Zitat Chang, C., Zhao, W., Wang, C., & Song, Y. (2022). A novel energy management strategy integrating deep reinforcement learning and rule based on condition identification. IEEE Transactions on Vehicular Technology, 72(2), 1674–1688.CrossRefMATH Chang, C., Zhao, W., Wang, C., & Song, Y. (2022). A novel energy management strategy integrating deep reinforcement learning and rule based on condition identification. IEEE Transactions on Vehicular Technology, 72(2), 1674–1688.CrossRefMATH
Zurück zum Zitat Du, A., Han, Y., & Zhu, Z. (2022). Review on multi-objective optimization of energy management strategy for hybrid electric vehicle integrated with traffic information. Energy Sources, Part a: Recovery, Utilization, and Environmental Effects, 44(3), 7914–7933.CrossRefMATH Du, A., Han, Y., & Zhu, Z. (2022). Review on multi-objective optimization of energy management strategy for hybrid electric vehicle integrated with traffic information. Energy Sources, Part a: Recovery, Utilization, and Environmental Effects, 44(3), 7914–7933.CrossRefMATH
Zurück zum Zitat Gan, J., Li, S., Wei, C., Deng, L., & Tang, X. (2023). Intelligent learning algorithm and intelligent transportation-based energy management strategies for hybrid electric vehicles: A review. IEEE Transactions on Intelligent Transportation Systems, 24(10), 10345–10361.CrossRefMATH Gan, J., Li, S., Wei, C., Deng, L., & Tang, X. (2023). Intelligent learning algorithm and intelligent transportation-based energy management strategies for hybrid electric vehicles: A review. IEEE Transactions on Intelligent Transportation Systems, 24(10), 10345–10361.CrossRefMATH
Zurück zum Zitat Guo, N., Zhang, X., Zou, Y., Guo, L., & Du, G. (2021b). Real-time predictive energy management of plug-in hybrid electric vehicles for coordination of fuel economy and battery degradation. Energy, 214, 119070.CrossRefMATH Guo, N., Zhang, X., Zou, Y., Guo, L., & Du, G. (2021b). Real-time predictive energy management of plug-in hybrid electric vehicles for coordination of fuel economy and battery degradation. Energy, 214, 119070.CrossRefMATH
Zurück zum Zitat Guo, X., Yan, X., Chen, Z., & Meng, Z. (2021a). A novel closed-loop system for vehicle speed prediction based on APSO LSSVM and BP NN. Energies, 15(1), 21.CrossRefMATH Guo, X., Yan, X., Chen, Z., & Meng, Z. (2021a). A novel closed-loop system for vehicle speed prediction based on APSO LSSVM and BP NN. Energies, 15(1), 21.CrossRefMATH
Zurück zum Zitat Lazar, R. G., Pauca, O., Maxim, A., & Caruntu, C. F. (2023). Control architecture for connected vehicle platoons: From sensor data to controller design using vehicle-to-everything communication. Sensors, 23(17), 7576.CrossRefMATH Lazar, R. G., Pauca, O., Maxim, A., & Caruntu, C. F. (2023). Control architecture for connected vehicle platoons: From sensor data to controller design using vehicle-to-everything communication. Sensors, 23(17), 7576.CrossRefMATH
Zurück zum Zitat Lesch, V., Breitbach, M., Segata, M., Becker, C., Kounev, S., & Krupitzer, C. (2021). An overview on approaches for coordination of platoons. IEEE Transactions on Intelligent Transportation Systems, 23(8), 10049–10065.CrossRef Lesch, V., Breitbach, M., Segata, M., Becker, C., Kounev, S., & Krupitzer, C. (2021). An overview on approaches for coordination of platoons. IEEE Transactions on Intelligent Transportation Systems, 23(8), 10049–10065.CrossRef
Zurück zum Zitat Liu, Y., Li, J., Chen, Z., Qin, D., & Zhang, Y. (2019). Research on a multi-objective hierarchical prediction energy management strategy for range extended fuel cell vehicles. Journal of Power Sources, 429, 55–66.CrossRefMATH Liu, Y., Li, J., Chen, Z., Qin, D., & Zhang, Y. (2019). Research on a multi-objective hierarchical prediction energy management strategy for range extended fuel cell vehicles. Journal of Power Sources, 429, 55–66.CrossRefMATH
Zurück zum Zitat Lü, X., Li, S., He, X., Xie, C., & Yang, X. (2022). Hybrid electric vehicles: A review of energy management strategies based on model predictive control. Journal of Energy Storage, 56, 106112.CrossRefMATH Lü, X., Li, S., He, X., Xie, C., & Yang, X. (2022). Hybrid electric vehicles: A review of energy management strategies based on model predictive control. Journal of Energy Storage, 56, 106112.CrossRefMATH
Zurück zum Zitat Qiang, P., Wu, P., Pan, T., & Zang, H. (2022). Real-time energy management strategy based on driving conditions using a feature fusion extreme learning Machine. Energies, 15(12), 4353.CrossRefMATH Qiang, P., Wu, P., Pan, T., & Zang, H. (2022). Real-time energy management strategy based on driving conditions using a feature fusion extreme learning Machine. Energies, 15(12), 4353.CrossRefMATH
Zurück zum Zitat Saiteja, P., & Ashok, B. (2022). Critical review on structural architecture, energy control strategies and development process towards optimal energy management in hybrid vehicles. Renewable and Sustainable Energy Reviews, 157, 112038.CrossRefMATH Saiteja, P., & Ashok, B. (2022). Critical review on structural architecture, energy control strategies and development process towards optimal energy management in hybrid vehicles. Renewable and Sustainable Energy Reviews, 157, 112038.CrossRefMATH
Zurück zum Zitat Urooj, A., & Nasir, A. (2024). Review of intelligent energy management techniques for hybrid electric vehicles. Journal of Energy Storage, 92, 112132.CrossRefMATH Urooj, A., & Nasir, A. (2024). Review of intelligent energy management techniques for hybrid electric vehicles. Journal of Energy Storage, 92, 112132.CrossRefMATH
Zurück zum Zitat Wang, L., Cui, Y., Zhang, F., Coskun, S., Liu, K., & Li, G. (2022). Stochastic speed prediction for connected vehicles using improved bayesian networks with back propagation. Science China Technological Sciences, 65(7), 1524–1536.CrossRefMATH Wang, L., Cui, Y., Zhang, F., Coskun, S., Liu, K., & Li, G. (2022). Stochastic speed prediction for connected vehicles using improved bayesian networks with back propagation. Science China Technological Sciences, 65(7), 1524–1536.CrossRefMATH
Zurück zum Zitat Wang, Y., Zhang, Y., Zhang, C., Zhou, J., Hu, D., & Zeng, T. (2023). Genetic algorithm-based fuzzy optimization of energy management strategy for fuel cell vehicles considering driving cycles recognition. Energy, 263, 126112.CrossRefMATH Wang, Y., Zhang, Y., Zhang, C., Zhou, J., Hu, D., & Zeng, T. (2023). Genetic algorithm-based fuzzy optimization of energy management strategy for fuel cell vehicles considering driving cycles recognition. Energy, 263, 126112.CrossRefMATH
Zurück zum Zitat Xia, J., Wang, F., & Xu, X. (2021). A predictive energy management strategy for multi-mode plug-in hybrid electric vehicle based on long short-term memory neural network. IFAC-PapersOnLine, 54(10), 132–137.CrossRefMATH Xia, J., Wang, F., & Xu, X. (2021). A predictive energy management strategy for multi-mode plug-in hybrid electric vehicle based on long short-term memory neural network. IFAC-PapersOnLine, 54(10), 132–137.CrossRefMATH
Zurück zum Zitat Xie, H. Hu, D., & Song, K. (2021). An iterative optimization algorithm for vehicle speed prediction considering driving style and historical data effects. In 2021 40th Chinese Control Conference (CCC) (pp. 6094–6100). IEEE. Xie, H. Hu, D., & Song, K. (2021). An iterative optimization algorithm for vehicle speed prediction considering driving style and historical data effects. In 2021 40th Chinese Control Conference (CCC) (pp. 6094–6100). IEEE.
Zurück zum Zitat Xu, B., & Wang, H. (2023). A comparative analysis of adaptive energy management for a hybrid electric vehicle via five driving condition recognition methods. Energy, 269, 126732.CrossRefMATH Xu, B., & Wang, H. (2023). A comparative analysis of adaptive energy management for a hybrid electric vehicle via five driving condition recognition methods. Energy, 269, 126732.CrossRefMATH
Zurück zum Zitat Yin, Y., Huang, X., Pan, X., Zhan, S., Ma, Y., & Zhang, X. (2022). Hyperparameters of Q-learning algorithm adapting to the driving cycle based on kl driving cycle recognition. International Journal of Automotive Technology, 23(4), 967–981.CrossRef Yin, Y., Huang, X., Pan, X., Zhan, S., Ma, Y., & Zhang, X. (2022). Hyperparameters of Q-learning algorithm adapting to the driving cycle based on kl driving cycle recognition. International Journal of Automotive Technology, 23(4), 967–981.CrossRef
Zurück zum Zitat Yin, Y., Huang, X., Zhan, S., Gou, H., Zhang, X., & Wang, F. (2023). Hierarchical energy management control based on different communication topologies for hybrid electric vehicle platoon. Journal of Cleaner Production, 412, 137414.CrossRef Yin, Y., Huang, X., Zhan, S., Gou, H., Zhang, X., & Wang, F. (2023). Hierarchical energy management control based on different communication topologies for hybrid electric vehicle platoon. Journal of Cleaner Production, 412, 137414.CrossRef
Zurück zum Zitat Yuan, J., Shao, J., & Li, X. (2021). Speed planning and energy optimal control of hybrid electric vehicles based on internet of vehicles. IFAC-Papers OnLine, 54(10), 169–175.CrossRefMATH Yuan, J., Shao, J., & Li, X. (2021). Speed planning and energy optimal control of hybrid electric vehicles based on internet of vehicles. IFAC-Papers OnLine, 54(10), 169–175.CrossRefMATH
Zurück zum Zitat Zhang, J., Chu, L., Guo, C., Fu, Z., & Zhao, D. (2021). A novel energy management strategy design methodology of a PHEV based on data-driven approach and online signal analysis. IEEE Access, 9, 6018–6032.CrossRefMATH Zhang, J., Chu, L., Guo, C., Fu, Z., & Zhao, D. (2021). A novel energy management strategy design methodology of a PHEV based on data-driven approach and online signal analysis. IEEE Access, 9, 6018–6032.CrossRefMATH
Zurück zum Zitat Zhu, Y., Li, X., Liu, Q., Li, S., & Xu, Y. (2022). A comprehensive review of energy management strategies for hybrid electric vehicles. Mechanical Sciences, 13(1), 147–188.CrossRefMATH Zhu, Y., Li, X., Liu, Q., Li, S., & Xu, Y. (2022). A comprehensive review of energy management strategies for hybrid electric vehicles. Mechanical Sciences, 13(1), 147–188.CrossRefMATH
Metadaten
Titel
Hierarchical Control for PHEV Platoon Based on Multi-information Fusion Speed Prediction
verfasst von
Yanli Yin
Haixin Chen
Fuchun Zhang
Fuzhen Wang
Hangyang Xiao
Publikationsdatum
07.01.2025
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-024-00190-9