Skip to main content
Erschienen in: Neuroinformatics 3/2017

29.05.2017

Hierarchical High-Order Functional Connectivity Networks and Selective Feature Fusion for MCI Classification

verfasst von: Xiaobo Chen, Han Zhang, Seong-Whan Lee, Dinggang Shen, the Alzheimer’s Disease Neuroimaging Initiative

Erschienen in: Neuroinformatics | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Conventional Functional connectivity (FC) analysis focuses on characterizing the correlation between two brain regions, whereas the high-order FC can model the correlation between two brain region pairs. To reduce the number of brain region pairs, clustering is applied to group all the brain region pairs into a small number of clusters. Then, a high-order FC network can be constructed based on the clustering result. By varying the number of clusters, multiple high-order FC networks can be generated and the one with the best overall performance can be finally selected. However, the important information contained in other networks may be simply discarded. To address this issue, in this paper, we propose to make full use of the information contained in all high-order FC networks. First, an agglomerative hierarchical clustering technique is applied such that the clustering result in one layer always depends on the previous layer, thus making the high-order FC networks in the two consecutive layers highly correlated. As a result, the features extracted from high-order FC network in each layer can be decomposed into two parts (blocks), i.e., one is redundant while the other might be informative or complementary, with respect to its previous layer. Then, a selective feature fusion method, which combines sequential forward selection and sparse regression, is developed to select a feature set from those informative feature blocks for classification. Experimental results confirm that our novel method outperforms the best single high-order FC network in diagnosis of mild cognitive impairment (MCI) subjects.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anderson, A., & Cohen, M. S. (2013). Decreased small-world functional network connectivity and clustering across resting state networks in schizophrenia: An fMRI classification tutorial. Frontiers in Human Neuroscience, 7, 520. doi:10.3389/fnhum.PubMedPubMedCentral Anderson, A., & Cohen, M. S. (2013). Decreased small-world functional network connectivity and clustering across resting state networks in schizophrenia: An fMRI classification tutorial. Frontiers in Human Neuroscience, 7, 520. doi:10.​3389/​fnhum.PubMedPubMedCentral
Zurück zum Zitat Bain, L.J., Jedrziewski, K., Morrison-Bogorad, M., Albert, M., Cotman, C., Hendrie, H., Trojanowski, J.Q. (2008) Healthy brain aging: A meeting report from the sylvan M. Cohen annual retreat of the University of Pennsylvania Institute on aging. Alzheimer's & dementia: the journal of the Alzheimer's Association, 4:443. Bain, L.J., Jedrziewski, K., Morrison-Bogorad, M., Albert, M., Cotman, C., Hendrie, H., Trojanowski, J.Q. (2008) Healthy brain aging: A meeting report from the sylvan M. Cohen annual retreat of the University of Pennsylvania Institute on aging. Alzheimer's & dementia: the journal of the Alzheimer's Association, 4:443.
Zurück zum Zitat Brier, M. R., Thomas, J. B., Fagan, A. M., Hassenstab, J., Holtzman, D. M., Benzinger, T. L., Morris, J. C., & Ances, B. M. (2014). Functional connectivity and graph theory in preclinical Alzheimer's disease. Neurobiology of Aging, 35, 757–768.CrossRefPubMed Brier, M. R., Thomas, J. B., Fagan, A. M., Hassenstab, J., Holtzman, D. M., Benzinger, T. L., Morris, J. C., & Ances, B. M. (2014). Functional connectivity and graph theory in preclinical Alzheimer's disease. Neurobiology of Aging, 35, 757–768.CrossRefPubMed
Zurück zum Zitat Brookmeyer, R., Johnson, E., Ziegler-Graham, K., & Arrighi, H. M. (2007). Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement, 3, 186–191.CrossRefPubMed Brookmeyer, R., Johnson, E., Ziegler-Graham, K., & Arrighi, H. M. (2007). Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement, 3, 186–191.CrossRefPubMed
Zurück zum Zitat Chang, C., Lin, C. (2001) LIBSVM: A library for support vector machines. Citeseer. Chang, C., Lin, C. (2001) LIBSVM: A library for support vector machines. Citeseer.
Zurück zum Zitat Chen, X., Yang, J., Ye, Q., & Liang, J. (2011a). Recursive projection twin support vector machine via within-class variance minimization. Pattern Recognition, 44(10–11), 2643–2655.CrossRef Chen, X., Yang, J., Ye, Q., & Liang, J. (2011a). Recursive projection twin support vector machine via within-class variance minimization. Pattern Recognition, 44(10–11), 2643–2655.CrossRef
Zurück zum Zitat Chen, X., Yang, J., & Liang, J. (2011b). Optimal Locality Regularized Least Squares Support Vector Machine via Alternating Optimization. Neural Processing Letters, 33, 301–315.CrossRef Chen, X., Yang, J., & Liang, J. (2011b). Optimal Locality Regularized Least Squares Support Vector Machine via Alternating Optimization. Neural Processing Letters, 33, 301–315.CrossRef
Zurück zum Zitat Chen, X., Xiao, Y., Cai, Y., & Chen, L. (2014). Structural max-margin discriminant analysis for feature extraction. Knowledge-Based Systems, 70, 154–166.CrossRef Chen, X., Xiao, Y., Cai, Y., & Chen, L. (2014). Structural max-margin discriminant analysis for feature extraction. Knowledge-Based Systems, 70, 154–166.CrossRef
Zurück zum Zitat Chen, X., Zhang, H., Gao, Y., Wee, C.-Y., Li, G., & Shen, D. (2016). High-order resting-state functional connectivity network for MCI classification. Human Brain Mapping, 37(9), 3282–3296.CrossRefPubMed Chen, X., Zhang, H., Gao, Y., Wee, C.-Y., Li, G., & Shen, D. (2016). High-order resting-state functional connectivity network for MCI classification. Human Brain Mapping, 37(9), 3282–3296.CrossRefPubMed
Zurück zum Zitat Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.
Zurück zum Zitat Fekete, T., Wilf, M., Rubin, D., Edelman, S., Malach, R., & Mujica-Parodi, L. R. (2013). Combining classification with fMRI-derived complex network measures for potential neurodiagnostics. PloS One, 8(5), e62867.CrossRefPubMedPubMedCentral Fekete, T., Wilf, M., Rubin, D., Edelman, S., Malach, R., & Mujica-Parodi, L. R. (2013). Combining classification with fMRI-derived complex network measures for potential neurodiagnostics. PloS One, 8(5), e62867.CrossRefPubMedPubMedCentral
Zurück zum Zitat Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews. Neuroscience, 8, 700–711.CrossRefPubMed Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews. Neuroscience, 8, 700–711.CrossRefPubMed
Zurück zum Zitat Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9, 432–441.CrossRefPubMed Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9, 432–441.CrossRefPubMed
Zurück zum Zitat Friston, K., Frith, C., Liddle, P., & Frackowiak, R. (1993). Functional connectivity: The principal-component analysis of large (PET) data sets. Journal of Cerebral Blood Flow and Metabolism, 13, 5–5.CrossRefPubMed Friston, K., Frith, C., Liddle, P., & Frackowiak, R. (1993). Functional connectivity: The principal-component analysis of large (PET) data sets. Journal of Cerebral Blood Flow and Metabolism, 13, 5–5.CrossRefPubMed
Zurück zum Zitat Gauthier, S., Reisberg, B., Zaudig, M., Petersen, R. C., Ritchie, K., Broich, K., Belleville, S., Brodaty, H., Bennett, D., & Chertkow, H. (2006). Mild cognitive impairment. Lancet, 367, 1262–1270.CrossRefPubMed Gauthier, S., Reisberg, B., Zaudig, M., Petersen, R. C., Ritchie, K., Broich, K., Belleville, S., Brodaty, H., Bennett, D., & Chertkow, H. (2006). Mild cognitive impairment. Lancet, 367, 1262–1270.CrossRefPubMed
Zurück zum Zitat Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Current Opinion in Neurology, 21, 424–430.CrossRefPubMed Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Current Opinion in Neurology, 21, 424–430.CrossRefPubMed
Zurück zum Zitat Huang, S., Li, J., Sun, L., Ye, J., Fleisher, A., Wu, T., Chen, K., Reiman, E., & Initiative, A.s.D.N. (2010). Learning brain connectivity of Alzheimer's disease by sparse inverse covariance estimation. NeuroImage, 50, 935–949.CrossRefPubMedPubMedCentral Huang, S., Li, J., Sun, L., Ye, J., Fleisher, A., Wu, T., Chen, K., Reiman, E., & Initiative, A.s.D.N. (2010). Learning brain connectivity of Alzheimer's disease by sparse inverse covariance estimation. NeuroImage, 50, 935–949.CrossRefPubMedPubMedCentral
Zurück zum Zitat Jain, A., & Zongker, D. (1997). Feature selection: Evaluation, application, and small sample performance. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 19, 153–158.CrossRef Jain, A., & Zongker, D. (1997). Feature selection: Evaluation, application, and small sample performance. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 19, 153–158.CrossRef
Zurück zum Zitat Jie, B., Shen, D., Zhang, D. (2014a) Brain connectivity hyper-network for MCI classification. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014: Springer. P 724-732. Jie, B., Shen, D., Zhang, D. (2014a) Brain connectivity hyper-network for MCI classification. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014: Springer. P 724-732.
Zurück zum Zitat Jie, B., Zhang, D., Gao, W., Wang, Q., Wee, C.-Y., & Shen, D. (2014b). Integration of network topological and connectivity properties for neuroimaging classification. Biomedical Engineering, IEEE Transactions on, 61, 576–589.CrossRef Jie, B., Zhang, D., Gao, W., Wang, Q., Wee, C.-Y., & Shen, D. (2014b). Integration of network topological and connectivity properties for neuroimaging classification. Biomedical Engineering, IEEE Transactions on, 61, 576–589.CrossRef
Zurück zum Zitat Johnson, S., Schmitz, T., Moritz, C., Meyerand, M., Rowley, H., Alexander, A., Hansen, K., Gleason, C., Carlsson, C., & Ries, M. (2006). Activation of brain regions vulnerable to Alzheimer's disease: The effect of mild cognitive impairment. Neurobiology of Aging, 27, 1604–1612.CrossRefPubMed Johnson, S., Schmitz, T., Moritz, C., Meyerand, M., Rowley, H., Alexander, A., Hansen, K., Gleason, C., Carlsson, C., & Ries, M. (2006). Activation of brain regions vulnerable to Alzheimer's disease: The effect of mild cognitive impairment. Neurobiology of Aging, 27, 1604–1612.CrossRefPubMed
Zurück zum Zitat Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97, 273–324.CrossRef Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97, 273–324.CrossRef
Zurück zum Zitat Liu, J., Ji, S., & Ye, J. (2009). SLEP: Sparse learning with efficient projections. Arizona State University, 6, 491. Liu, J., Ji, S., & Ye, J. (2009). SLEP: Sparse learning with efficient projections. Arizona State University, 6, 491.
Zurück zum Zitat Liu, S., Liu, S., Cai, W., Che, H., Pujol, S., Kikinis, R., Feng, D., & Fulham, M. J. (2015). Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease. Biomedical Engineering, IEEE Transactions on, 62, 1132–1140.CrossRef Liu, S., Liu, S., Cai, W., Che, H., Pujol, S., Kikinis, R., Feng, D., & Fulham, M. J. (2015). Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease. Biomedical Engineering, IEEE Transactions on, 62, 1132–1140.CrossRef
Zurück zum Zitat McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer's disease report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease. Neurology, 34, 939–939.CrossRefPubMed McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer's disease report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease. Neurology, 34, 939–939.CrossRefPubMed
Zurück zum Zitat Misra, C., Fan, Y., & Davatzikos, C. (2009). Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: Results from ADNI. NeuroImage, 44, 1415–1422.CrossRefPubMed Misra, C., Fan, Y., & Davatzikos, C. (2009). Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: Results from ADNI. NeuroImage, 44, 1415–1422.CrossRefPubMed
Zurück zum Zitat Mitchell, T.M. (1997) Machine learning. McGraw-Hill New York. Mitchell, T.M. (1997) Machine learning. McGraw-Hill New York.
Zurück zum Zitat Petersen, R. C., Doody, R., Kurz, A., Mohs, R. C., Morris, J. C., Rabins, P. V., Ritchie, K., Rossor, M., Thal, L., & Winblad, B. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58, 1985–1992.CrossRefPubMed Petersen, R. C., Doody, R., Kurz, A., Mohs, R. C., Morris, J. C., Rabins, P. V., Ritchie, K., Rossor, M., Thal, L., & Winblad, B. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58, 1985–1992.CrossRefPubMed
Zurück zum Zitat Rombouts, S. A., Barkhof, F., Goekoop, R., Stam, C. J., & Scheltens, P. (2005). Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: An fMRI study. Human Brain Mapping, 26, 231–239.CrossRefPubMed Rombouts, S. A., Barkhof, F., Goekoop, R., Stam, C. J., & Scheltens, P. (2005). Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: An fMRI study. Human Brain Mapping, 26, 231–239.CrossRefPubMed
Zurück zum Zitat Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52, 1059–1069.CrossRefPubMed Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52, 1059–1069.CrossRefPubMed
Zurück zum Zitat dos Santos Siqueira, A., Biazoli Junior, C.E., Comfort, W.E., Rohde, L.A., & Sato, J.R. (2014). Abnormal functional resting-state networks in ADHD: Graph theory and pattern recognition analysis of fMRI data. BioMed Research International. dos Santos Siqueira, A., Biazoli Junior, C.E., Comfort, W.E., Rohde, L.A., & Sato, J.R. (2014). Abnormal functional resting-state networks in ADHD: Graph theory and pattern recognition analysis of fMRI data. BioMed Research International.
Zurück zum Zitat Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006) Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. AI 2006: Advances in Artificial Intelligence. Springer p 1015–1021. Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006) Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. AI 2006: Advances in Artificial Intelligence. Springer p 1015–1021.
Zurück zum Zitat Sorg, C., Riedl, V., Mühlau, M., Calhoun, V. D., Eichele, T., Läer, L., Drzezga, A., Förstl, H., Kurz, A., & Zimmer, C. (2007). Selective changes of resting-state networks in individuals at risk for Alzheimer's disease. Proceedings of the National Academy of Sciences, 104, 18760–18765.CrossRef Sorg, C., Riedl, V., Mühlau, M., Calhoun, V. D., Eichele, T., Läer, L., Drzezga, A., Förstl, H., Kurz, A., & Zimmer, C. (2007). Selective changes of resting-state networks in individuals at risk for Alzheimer's disease. Proceedings of the National Academy of Sciences, 104, 18760–18765.CrossRef
Zurück zum Zitat Stam, C., Jones, B., Nolte, G., Breakspear, M., & Scheltens, P. (2007). Small-world networks and functional connectivity in Alzheimer's disease. Cerebral Cortex, 17, 92–99.CrossRefPubMed Stam, C., Jones, B., Nolte, G., Breakspear, M., & Scheltens, P. (2007). Small-world networks and functional connectivity in Alzheimer's disease. Cerebral Cortex, 17, 92–99.CrossRefPubMed
Zurück zum Zitat Stam, C., De Haan, W., Daffertshofer, A., Jones, B., Manshanden, I., Van Walsum, A. V. C., Montez, T., Verbunt, J., De Munck, J., & Van Dijk, B. (2009). Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease. Brain, 132, 213–224.CrossRefPubMed Stam, C., De Haan, W., Daffertshofer, A., Jones, B., Manshanden, I., Van Walsum, A. V. C., Montez, T., Verbunt, J., De Munck, J., & Van Dijk, B. (2009). Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease. Brain, 132, 213–224.CrossRefPubMed
Zurück zum Zitat Suk, H.-I., Lee, S.-W., Shen, D., & Initiative, A.s.D.N. (2013). Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Structure & Function, 220, 841–859.CrossRef Suk, H.-I., Lee, S.-W., Shen, D., & Initiative, A.s.D.N. (2013). Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Structure & Function, 220, 841–859.CrossRef
Zurück zum Zitat Suk, H.-I., Lee, S.-W., Shen, D., & Initiative, A.D.N. (2014a) Subclass-based multi-task learning for Alzheimer's disease diagnosis Frontiers in Aging Neuroscience, 6. Suk, H.-I., Lee, S.-W., Shen, D., & Initiative, A.D.N. (2014a) Subclass-based multi-task learning for Alzheimer's disease diagnosis Frontiers in Aging Neuroscience, 6.
Zurück zum Zitat Suk, H.-I., Lee, S.-W., Shen, D., & Initiative, A.s.D.N. (2014b). Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage, 101, 569–582.CrossRefPubMedPubMedCentral Suk, H.-I., Lee, S.-W., Shen, D., & Initiative, A.s.D.N. (2014b). Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage, 101, 569–582.CrossRefPubMedPubMedCentral
Zurück zum Zitat Suk, H.-I., Wee, C.-Y., Lee, S.-W., & Shen, D. (2014c) Supervised discriminative group sparse representation for mild cognitive impairment diagnosis. Neuroinformatics, 9349, 1-19. Suk, H.-I., Wee, C.-Y., Lee, S.-W., & Shen, D. (2014c) Supervised discriminative group sparse representation for mild cognitive impairment diagnosis. Neuroinformatics, 9349, 1-19.
Zurück zum Zitat Suk, H.-I., Lee, S.-W., & Shen, D. (2015) A hybrid of deep network and hidden Markov model for MCI identification with resting-state fMRI. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015. Springer. p 573-580. Suk, H.-I., Lee, S.-W., & Shen, D. (2015) A hybrid of deep network and hidden Markov model for MCI identification with resting-state fMRI. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015. Springer. p 573-580.
Zurück zum Zitat Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B: Methodological, 58, 267–288. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B: Methodological, 58, 267–288.
Zurück zum Zitat Toussaint, P.-J., Maiz, S., Coynel, D., Doyon, J., Messé, A., de Souza, L. C., Sarazin, M., Perlbarg, V., Habert, M.-O., & Benali, H. (2014). Characteristics of the default mode functional connectivity in normal ageing and Alzheimer's disease using resting state fMRI with a combined approach of entropy-based and graph theoretical measurements. NeuroImage, 101, 778–786.CrossRefPubMed Toussaint, P.-J., Maiz, S., Coynel, D., Doyon, J., Messé, A., de Souza, L. C., Sarazin, M., Perlbarg, V., Habert, M.-O., & Benali, H. (2014). Characteristics of the default mode functional connectivity in normal ageing and Alzheimer's disease using resting state fMRI with a combined approach of entropy-based and graph theoretical measurements. NeuroImage, 101, 778–786.CrossRefPubMed
Zurück zum Zitat Wang, K., Liang, M., Wang, L., Tian, L., Zhang, X., Li, K., & Jiang, T. (2007). Altered functional connectivity in early Alzheimer's disease: A resting-state fMRI study. Human Brain Mapping, 28, 967–978.CrossRefPubMed Wang, K., Liang, M., Wang, L., Tian, L., Zhang, X., Li, K., & Jiang, T. (2007). Altered functional connectivity in early Alzheimer's disease: A resting-state fMRI study. Human Brain Mapping, 28, 967–978.CrossRefPubMed
Zurück zum Zitat Ward Jr., J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.CrossRef Ward Jr., J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.CrossRef
Zurück zum Zitat Watts, D.J., Strogatz, S.H. (1998) Collective dynamics of ‘small-world’networks. nature, 393:440-442. Watts, D.J., Strogatz, S.H. (1998) Collective dynamics of ‘small-world’networks. nature, 393:440-442.
Zurück zum Zitat Wee, C.-Y., Yap, P.-T., Denny, K., Browndyke, J. N., Potter, G. G., Welsh-Bohmer, K. A., Wang, L., & Shen, D. (2012). Resting-state multi-spectrum functional connectivity networks for identification of MCI patients. PloS One, 7, e37828.CrossRefPubMedPubMedCentral Wee, C.-Y., Yap, P.-T., Denny, K., Browndyke, J. N., Potter, G. G., Welsh-Bohmer, K. A., Wang, L., & Shen, D. (2012). Resting-state multi-spectrum functional connectivity networks for identification of MCI patients. PloS One, 7, e37828.CrossRefPubMedPubMedCentral
Zurück zum Zitat Wee, C.-Y., Yang, S., Yap, P.-T., & Shen, D. (2013) Temporally dynamic resting-state functional connectivity networks for early MCI identification. Machine Learning in Medical Imaging: Springer p 139–146. Wee, C.-Y., Yang, S., Yap, P.-T., & Shen, D. (2013) Temporally dynamic resting-state functional connectivity networks for early MCI identification. Machine Learning in Medical Imaging: Springer p 139–146.
Zurück zum Zitat Wee, C.-Y., Yap, P.-T., Zhang, D., Wang, L., & Shen, D. (2014). Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification. Brain Structure & Function, 219(2), 641–656.CrossRef Wee, C.-Y., Yap, P.-T., Zhang, D., Wang, L., & Shen, D. (2014). Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification. Brain Structure & Function, 219(2), 641–656.CrossRef
Zurück zum Zitat Wee, C.-Y., Yang, S., Yap, P.-T., Shen, D., & Initiative, A.s.D.N. (2015). Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification. Brain Imaging and Behavior, 10(2), 342–356. Wee, C.-Y., Yang, S., Yap, P.-T., Shen, D., & Initiative, A.s.D.N. (2015). Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification. Brain Imaging and Behavior, 10(2), 342–356.
Zurück zum Zitat Whitwell, J. L., Przybelski, S. A., Weigand, S. D., Knopman, D. S., Boeve, B. F., Petersen, R. C., & Jack, C. R. (2007). 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer's disease. Brain, 130, 1777–1786.CrossRefPubMedPubMedCentral Whitwell, J. L., Przybelski, S. A., Weigand, S. D., Knopman, D. S., Boeve, B. F., Petersen, R. C., & Jack, C. R. (2007). 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer's disease. Brain, 130, 1777–1786.CrossRefPubMedPubMedCentral
Zurück zum Zitat Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., & Ma, Y. (2009). Robust face recognition via sparse representation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31, 210–227.CrossRef Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., & Ma, Y. (2009). Robust face recognition via sparse representation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31, 210–227.CrossRef
Zurück zum Zitat Yu, R., Zhang, H., An, L., Chen, X., Wei, Z., Shen, D. (2016). Correlation-weighted sparse group representation for brain network construction in MCI classification. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016. Springer. P 37-45. Yu, R., Zhang, H., An, L., Chen, X., Wei, Z., Shen, D. (2016). Correlation-weighted sparse group representation for brain network construction in MCI classification. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016. Springer. P 37-45.
Zurück zum Zitat Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D., & Initiative, A.s.D.N. (2011). Multimodal classification of Alzheimer's disease and mild cognitive impairment. NeuroImage, 55, 856–867.CrossRefPubMedPubMedCentral Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D., & Initiative, A.s.D.N. (2011). Multimodal classification of Alzheimer's disease and mild cognitive impairment. NeuroImage, 55, 856–867.CrossRefPubMedPubMedCentral
Zurück zum Zitat Zhang, H., Chen X., Shi, F., Li, G., Kim, M., Giannakopoulos, P., Haller, S., Shen, D. (2016a). Topographical Information-Based High-Order Functional Connectivity and Its Application in Abnormality Detection for Mild Cognitive Impairment. Journal of Alzheimers Disease, 54, 1095–1112. Zhang, H., Chen X., Shi, F., Li, G., Kim, M., Giannakopoulos, P., Haller, S., Shen, D. (2016a). Topographical Information-Based High-Order Functional Connectivity and Its Application in Abnormality Detection for Mild Cognitive Impairment. Journal of Alzheimers Disease, 54, 1095–1112.
Zurück zum Zitat Zhang, Y., Zhou, G., Jin, J., Zhao, Q., Wang, X., & Cichocki, A. (2016b). Sparse Bayesian classification of EEG for brain-Computer Interface. IEEE Transactions on Neural Networks and Learning Systems, 27(11), 2256–2267. Zhang, Y., Zhou, G., Jin, J., Zhao, Q., Wang, X., & Cichocki, A. (2016b). Sparse Bayesian classification of EEG for brain-Computer Interface. IEEE Transactions on Neural Networks and Learning Systems, 27(11), 2256–2267.
Zurück zum Zitat Zhang, Y., Wang, Y., Jin, J., & Wang, X. (2017). Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification. International Journal of Neural Systems, 27, 1650032.CrossRefPubMed Zhang, Y., Wang, Y., Jin, J., & Wang, X. (2017). Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification. International Journal of Neural Systems, 27, 1650032.CrossRefPubMed
Zurück zum Zitat Zhou, L., Wang, Y., Li, Y., Yap, P., & Shen, D. (2011). Hierarchical anatomical brain networks for MCI prediction: Revisiting volumetric measures. PloS One, 6(7), e21935.CrossRefPubMedPubMedCentral Zhou, L., Wang, Y., Li, Y., Yap, P., & Shen, D. (2011). Hierarchical anatomical brain networks for MCI prediction: Revisiting volumetric measures. PloS One, 6(7), e21935.CrossRefPubMedPubMedCentral
Metadaten
Titel
Hierarchical High-Order Functional Connectivity Networks and Selective Feature Fusion for MCI Classification
verfasst von
Xiaobo Chen
Han Zhang
Seong-Whan Lee
Dinggang Shen
the Alzheimer’s Disease Neuroimaging Initiative
Publikationsdatum
29.05.2017
Verlag
Springer US
Erschienen in
Neuroinformatics / Ausgabe 3/2017
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-017-9330-4

Weitere Artikel der Ausgabe 3/2017

Neuroinformatics 3/2017 Zur Ausgabe