Skip to main content
Erschienen in: Journal of Nanoparticle Research 11/2017

01.11.2017 | Research Paper

Hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 hollow spherical as cathode material for Li-ion battery

verfasst von: Yu Zhang, Tianjiao Zhu, Liu Lin, Mengwei Yuan, Huifeng Li, Genban Sun, Shulan Ma

Erschienen in: Journal of Nanoparticle Research | Ausgabe 11/2017

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lithium-rich manganese-based layered materials have been considered as the most promising cathode materials for future high-energy-density lithium-ion batteries. However, a great loss of irreversible capacity at the initial cycle, poor cycle stability, and rate performance severely restrict its application. Herein, we develop a new strategy to synthesize hierarchical hollow Li1.2Mn0.54Ni0.13Co0.13O2 microspheres using sucrose and cetyltrimethylammonium bromide as a soft template combined with hydrothermal assisted homogeneous precipitation method. The hollow microspheres are assembled by the primary particles with the size of 50 nm. As a result, the as-prepared material exhibits high reversible capacity, good cycling stability, and excellent rate property. It delivers a high initial discharge capacity of 305.9 mAh g−1 at 28 mA g−1 with coulombic efficiency of 80%. Even at high current density of 560 mA g−1, the sample also shows a stable discharge capacity of 215 mAh g−1. The enhanced electrochemical properties are attributed to the stable hierarchical hollow sphere structure and the appropriate contact area between electrode and electrolyte, thus effectively improve the lithium-ion intercalation and deintercalation kinetics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdelaal HM, Harbrecht B (2015) Fabrication of hollow spheres of metal oxide using fructose-derived carbonaceous spheres as sacrificial templates. CR Chim 18:379–384CrossRef Abdelaal HM, Harbrecht B (2015) Fabrication of hollow spheres of metal oxide using fructose-derived carbonaceous spheres as sacrificial templates. CR Chim 18:379–384CrossRef
Zurück zum Zitat Abouimrane A, Compton OC, Deng H, Belharouak I, Dikin DA, Nguyen ST, Amine K (2011) Improved rate capability in a high-capacity layered cathode material via thermal reduction. Electrochem Solid-State Lett 14:126–129CrossRef Abouimrane A, Compton OC, Deng H, Belharouak I, Dikin DA, Nguyen ST, Amine K (2011) Improved rate capability in a high-capacity layered cathode material via thermal reduction. Electrochem Solid-State Lett 14:126–129CrossRef
Zurück zum Zitat Abuzeid HAM, Hashem AMA, Abdel-Ghany AE, Eid AE, Mauger A, Groult H, Julien CM (2011) De-intercalation of LixCo0.8Mn0.2O2: a magnetic approach. J Power Sources 196:6440–6448CrossRef Abuzeid HAM, Hashem AMA, Abdel-Ghany AE, Eid AE, Mauger A, Groult H, Julien CM (2011) De-intercalation of LixCo0.8Mn0.2O2: a magnetic approach. J Power Sources 196:6440–6448CrossRef
Zurück zum Zitat Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657CrossRef Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657CrossRef
Zurück zum Zitat Armstrong AR, Holzapfel M, Novak P, Johnson CS, Kang SH, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li [Ni0.2Li0.2Mn0.6] O2. J Am Chem Soc 128:8694–8698CrossRef Armstrong AR, Holzapfel M, Novak P, Johnson CS, Kang SH, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li [Ni0.2Li0.2Mn0.6] O2. J Am Chem Soc 128:8694–8698CrossRef
Zurück zum Zitat Boulineau A, Simonin L, Colin JF, Bourbon C, Patoux P (2013) First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries. Nano Lett 13:3857–3863CrossRef Boulineau A, Simonin L, Colin JF, Bourbon C, Patoux P (2013) First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries. Nano Lett 13:3857–3863CrossRef
Zurück zum Zitat Dai DM, Li B, Tang HW, Chang K, Jiang K, Chang ZR, Yuan XZ (2016) Simultaneously improved capacity and initial coulombic efficiency of Li-rich cathode Li [Li0.2Mn0.54Co0.13Ni0.13] O2 by enlarging crystal cell from a nanoplate precursor. J Power Sources 307:665–672CrossRef Dai DM, Li B, Tang HW, Chang K, Jiang K, Chang ZR, Yuan XZ (2016) Simultaneously improved capacity and initial coulombic efficiency of Li-rich cathode Li [Li0.2Mn0.54Co0.13Ni0.13] O2 by enlarging crystal cell from a nanoplate precursor. J Power Sources 307:665–672CrossRef
Zurück zum Zitat Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRef Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRef
Zurück zum Zitat Feng X, Gao YR, Ben LB, Yang ZZ, Wang ZX, Chen LQ (2016) Enhanced electrochemical performance of Ti-doped Li1.2Mn0.54Co0.13Ni0.13O2 for lithium-ion batteries. J Power Sources 317:74–80CrossRef Feng X, Gao YR, Ben LB, Yang ZZ, Wang ZX, Chen LQ (2016) Enhanced electrochemical performance of Ti-doped Li1.2Mn0.54Co0.13Ni0.13O2 for lithium-ion batteries. J Power Sources 317:74–80CrossRef
Zurück zum Zitat Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRef Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRef
Zurück zum Zitat Guo YG, JS H, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887CrossRef Guo YG, JS H, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887CrossRef
Zurück zum Zitat Guo LC, Zhao NQ, Li JJ, He CN, Shi CS, Liu EZ (2015) Surface double phase network modified lithium rich layered oxides with improved rate capability for Li-ion batteries. ACS Appl Mater Interfaces 7:391–399CrossRef Guo LC, Zhao NQ, Li JJ, He CN, Shi CS, Liu EZ (2015) Surface double phase network modified lithium rich layered oxides with improved rate capability for Li-ion batteries. ACS Appl Mater Interfaces 7:391–399CrossRef
Zurück zum Zitat He X, Wang J, Kloepsch R, Krueger S, Jia HP, Liu HD, Vortmann B, Li J (2013) Enhanced electrochemical performance in lithium ion batteries of a hollow spherical lithium-rich cathode material synthesized by a molten salt method. Nano Res 7:110–118CrossRef He X, Wang J, Kloepsch R, Krueger S, Jia HP, Liu HD, Vortmann B, Li J (2013) Enhanced electrochemical performance in lithium ion batteries of a hollow spherical lithium-rich cathode material synthesized by a molten salt method. Nano Res 7:110–118CrossRef
Zurück zum Zitat Johnson CS, Li NC, Lefief C, Vaughey JT, Thackeray MM (2008) Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3 (1-x) LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem Mater 20:6095–6106CrossRef Johnson CS, Li NC, Lefief C, Vaughey JT, Thackeray MM (2008) Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3 (1-x) LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem Mater 20:6095–6106CrossRef
Zurück zum Zitat Li S, Ma G, Guo B, Yang ZH, Fan XM, Chen ZX, Zhang WX (2016a) Kinetically controlled synthesis of LiNi0.5Mn1.5O4Micro- and nanostructured hollow spheres as high-rate cathode materials for lithium ion batteries. Ind Eng Chem Res 55:9352–9361CrossRef Li S, Ma G, Guo B, Yang ZH, Fan XM, Chen ZX, Zhang WX (2016a) Kinetically controlled synthesis of LiNi0.5Mn1.5O4Micro- and nanostructured hollow spheres as high-rate cathode materials for lithium ion batteries. Ind Eng Chem Res 55:9352–9361CrossRef
Zurück zum Zitat Li Y, Wu C, Bai Y, Liu L, Wang H, Wu F, Zhang N, Zou YF (2016b) Hierarchical mesoporous lithium-rich Li [Li0.2Ni0.2Mn0.6] O2 cathode material synthesized via ice templating for lithium-ion battery. ACS Appl Mater Interfaces 8:18832–18840CrossRef Li Y, Wu C, Bai Y, Liu L, Wang H, Wu F, Zhang N, Zou YF (2016b) Hierarchical mesoporous lithium-rich Li [Li0.2Ni0.2Mn0.6] O2 cathode material synthesized via ice templating for lithium-ion battery. ACS Appl Mater Interfaces 8:18832–18840CrossRef
Zurück zum Zitat Lin B, Li QF, Liu BD, Zhang S, Deng C (2016) Biochemistry-directed hollow porous microspheres: bottom-up self-assembled polyanion-based cathodes for sodium ion batteries. Nano 8:8178–8188 Lin B, Li QF, Liu BD, Zhang S, Deng C (2016) Biochemistry-directed hollow porous microspheres: bottom-up self-assembled polyanion-based cathodes for sodium ion batteries. Nano 8:8178–8188
Zurück zum Zitat Liu JL, Hou MY, Yi J, Guo SS, Wang CX, Xia YY (2014) Improving the electrochemical performance of layered lithium-rich transition-metal oxides by controlling the structural defects. Energy Environ Sci 7:705–714CrossRef Liu JL, Hou MY, Yi J, Guo SS, Wang CX, Xia YY (2014) Improving the electrochemical performance of layered lithium-rich transition-metal oxides by controlling the structural defects. Energy Environ Sci 7:705–714CrossRef
Zurück zum Zitat Lu ZH, Dahn JR (2003) In situ and ex situ XRD investigation of Li [CrxLi1/3−x/3Mn2/3−2x/3] O2 (x=1/3) cathode material. J Electrochem Soc 150:1044–1051CrossRef Lu ZH, Dahn JR (2003) In situ and ex situ XRD investigation of Li [CrxLi1/3−x/3Mn2/3−2x/3] O2 (x=1/3) cathode material. J Electrochem Soc 150:1044–1051CrossRef
Zurück zum Zitat Ma DT, Zhang PX, Li YL, Ren XZ (2015) Li1.2Mn0.54Ni0.13Co0.13O2-encapsulated carbon nanofiber network cathodes with improved stability and rate capability for Li-ion batteries. Sci Rep 5:11257CrossRef Ma DT, Zhang PX, Li YL, Ren XZ (2015) Li1.2Mn0.54Ni0.13Co0.13O2-encapsulated carbon nanofiber network cathodes with improved stability and rate capability for Li-ion batteries. Sci Rep 5:11257CrossRef
Zurück zum Zitat Ma DT, Li YL, Zhang PX, Cooper AJ, AbdelkaderAM RXZ, Deng LB (2016a) Mesoporous Li1.2Mn0.54Ni0.13Co0.13O2 nanotubes for high-performance cathodes in Li-ion batteries. J Power Sources 311:35–41CrossRef Ma DT, Li YL, Zhang PX, Cooper AJ, AbdelkaderAM RXZ, Deng LB (2016a) Mesoporous Li1.2Mn0.54Ni0.13Co0.13O2 nanotubes for high-performance cathodes in Li-ion batteries. J Power Sources 311:35–41CrossRef
Zurück zum Zitat Ma G, Li S, Zhang WX, Yang ZH, Liu SL, Fan XM, Chen F, Tian Y, Zhang WB, Yang SH, Li M (2016b) A general and mild approach to controllable preparation of manganese-based micro- and nanostructured bars for high performance lithium-ion batteries. Angew Chem Int Ed Engl 55:3667–3671CrossRef Ma G, Li S, Zhang WX, Yang ZH, Liu SL, Fan XM, Chen F, Tian Y, Zhang WB, Yang SH, Li M (2016b) A general and mild approach to controllable preparation of manganese-based micro- and nanostructured bars for high performance lithium-ion batteries. Angew Chem Int Ed Engl 55:3667–3671CrossRef
Zurück zum Zitat Miao XW, Ni H, Zhang H, Wang CG, Fang JH, Yang G (2014a) Li2ZrO3-coated 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium-ion battery. J Power Sources 264:147–154CrossRef Miao XW, Ni H, Zhang H, Wang CG, Fang JH, Yang G (2014a) Li2ZrO3-coated 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium-ion battery. J Power Sources 264:147–154CrossRef
Zurück zum Zitat Miao XW, Yan Y, Wang CG, Cui LL, Fang JH, Yang G (2014b) Optimal microwave-assisted hydrothermal synthesis of nanosized xLi2MnO3·(1−x) LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium ion battery. J Power Sources 247:219–227CrossRef Miao XW, Yan Y, Wang CG, Cui LL, Fang JH, Yang G (2014b) Optimal microwave-assisted hydrothermal synthesis of nanosized xLi2MnO3·(1−x) LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium ion battery. J Power Sources 247:219–227CrossRef
Zurück zum Zitat Oh P, Myeong S, Cho W, Lee MJ, Ko M, Jeong HY, Cho J (2014) Superior long-term energy retention and volumetric energy density for Li-rich cathode materials. Nano Lett 14:5965–5972CrossRef Oh P, Myeong S, Cho W, Lee MJ, Ko M, Jeong HY, Cho J (2014) Superior long-term energy retention and volumetric energy density for Li-rich cathode materials. Nano Lett 14:5965–5972CrossRef
Zurück zum Zitat Saha A, Bharmoria P, Mondal A, Ghosh SC, Mahanty S, Panda AB (2015) Generalized synthesis and evaluation of formation mechanism of metal oxide/sulphide@C hollow spheres. J Mater Chem A 3:20297–20304CrossRef Saha A, Bharmoria P, Mondal A, Ghosh SC, Mahanty S, Panda AB (2015) Generalized synthesis and evaluation of formation mechanism of metal oxide/sulphide@C hollow spheres. J Mater Chem A 3:20297–20304CrossRef
Zurück zum Zitat Sathiya M, Rousse G, Ramesha K, Laisa CP, Vezin H, Sougrati MT, Doublet ML, Foix D, Gonbeau D, Walker W, Prakash AS, Ben Hassine M, Dupont L, Tarascon JM (2013) Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat Mater 12:827–835CrossRef Sathiya M, Rousse G, Ramesha K, Laisa CP, Vezin H, Sougrati MT, Doublet ML, Foix D, Gonbeau D, Walker W, Prakash AS, Ben Hassine M, Dupont L, Tarascon JM (2013) Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat Mater 12:827–835CrossRef
Zurück zum Zitat Shaju KM, Subba Rao GV, Chowdari BVR (2002) Performance of layered Li (Ni1/3Co1/3Mn1/3) O2 as cathode for Li-ion batteries. Electrochim Acta 48:145–151CrossRef Shaju KM, Subba Rao GV, Chowdari BVR (2002) Performance of layered Li (Ni1/3Co1/3Mn1/3) O2 as cathode for Li-ion batteries. Electrochim Acta 48:145–151CrossRef
Zurück zum Zitat Shi JL, Zhang JN, He M, Zhang XD, Yin YX, Li H, Guo YG, Gu L, Wan LJ (2016) Mitigating voltage decay of Li-rich cathode material via increasing Ni content for lithium-ion batteries. ACS Appl Mater Interfaces 8:20138–20146CrossRef Shi JL, Zhang JN, He M, Zhang XD, Yin YX, Li H, Guo YG, Gu L, Wan LJ (2016) Mitigating voltage decay of Li-rich cathode material via increasing Ni content for lithium-ion batteries. ACS Appl Mater Interfaces 8:20138–20146CrossRef
Zurück zum Zitat Song HQ, Liu YG, Zhang CP, Liu CF, Cao GZ (2015) Mo-doped LiV3O8nanorod-assembled nanosheets as a high performance cathode material for lithium ion batteries. J Mater Chem A 3:3547–3558CrossRef Song HQ, Liu YG, Zhang CP, Liu CF, Cao GZ (2015) Mo-doped LiV3O8nanorod-assembled nanosheets as a high performance cathode material for lithium ion batteries. J Mater Chem A 3:3547–3558CrossRef
Zurück zum Zitat Song JH, Kapylou A, Choi HS, BY Y, Matulevich E, Kang SH (2016) Suppression of irreversible capacity loss in Li-rich layered oxide by fluorine doping. J Power Sources 313:65–72CrossRef Song JH, Kapylou A, Choi HS, BY Y, Matulevich E, Kang SH (2016) Suppression of irreversible capacity loss in Li-rich layered oxide by fluorine doping. J Power Sources 313:65–72CrossRef
Zurück zum Zitat Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef
Zurück zum Zitat Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Hackney SA (2006) Comments on the structural complexity of lithium-rich Li1+xM1−xO2 electrodes (M = Mn, Ni, Co) for lithium batteries. Electrochem Commun 8:1531–1538CrossRef Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Hackney SA (2006) Comments on the structural complexity of lithium-rich Li1+xM1−xO2 electrodes (M = Mn, Ni, Co) for lithium batteries. Electrochem Commun 8:1531–1538CrossRef
Zurück zum Zitat Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17:3112–3125CrossRef Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17:3112–3125CrossRef
Zurück zum Zitat Wang DP, Belharouak I, Zhou GW, Amine K (2013) Nanoarchitecture multi-structural cathode materials for high capacity lithium batteries. Adv Funct Mater 23:1070–1075CrossRef Wang DP, Belharouak I, Zhou GW, Amine K (2013) Nanoarchitecture multi-structural cathode materials for high capacity lithium batteries. Adv Funct Mater 23:1070–1075CrossRef
Zurück zum Zitat Wu F, Wang Z, YF S, Guan YB, Jin Y, Yan N, Tian J, Bao LY, Chen S (2014) Synthesis and characterization of hollow spherical cathode Li1.2Mn0.54Ni0.13Co0.13O2 assembled with nanostructured particles via homogeneous precipitation-hydrothermal synthesis. J Power Sources 267:337–346CrossRef Wu F, Wang Z, YF S, Guan YB, Jin Y, Yan N, Tian J, Bao LY, Chen S (2014) Synthesis and characterization of hollow spherical cathode Li1.2Mn0.54Ni0.13Co0.13O2 assembled with nanostructured particles via homogeneous precipitation-hydrothermal synthesis. J Power Sources 267:337–346CrossRef
Zurück zum Zitat Xu B, Fell CR, Chi MF, Meng YS (2011) Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: a joint experimental and theoretical study. Energy Environ Sci 4:2223–2233CrossRef Xu B, Fell CR, Chi MF, Meng YS (2011) Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: a joint experimental and theoretical study. Energy Environ Sci 4:2223–2233CrossRef
Zurück zum Zitat Xu Y, Liu Y, Lu ZP, Wang HY, Sun DQ, Yang G (2016) The preparation and role of Li2ZrO3 surface coating LiNi0.5Co0.2Mn0.3O2 as cathode for lithium-ion batteries. Appl Surf Sci 361:150–156CrossRef Xu Y, Liu Y, Lu ZP, Wang HY, Sun DQ, Yang G (2016) The preparation and role of Li2ZrO3 surface coating LiNi0.5Co0.2Mn0.3O2 as cathode for lithium-ion batteries. Appl Surf Sci 361:150–156CrossRef
Zurück zum Zitat Yabuuchi N, Yoshii K, Myung ST, Nakai I, Komaba S (2011) Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2. J Am Chem Soc 133:4404–4419CrossRef Yabuuchi N, Yoshii K, Myung ST, Nakai I, Komaba S (2011) Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2. J Am Chem Soc 133:4404–4419CrossRef
Zurück zum Zitat Yang G, Ni H, Liu HD, Gao P, Ji HM, Roy S, Pinto J, Jiang XF (2011) The doping effect on the crystal structure and electrochemical properties of LiMnxM1−xPO4 (M=Mg, V, Fe, Co, Gd). J Power Sources 196:4747–4755CrossRef Yang G, Ni H, Liu HD, Gao P, Ji HM, Roy S, Pinto J, Jiang XF (2011) The doping effect on the crystal structure and electrochemical properties of LiMnxM1−xPO4 (M=Mg, V, Fe, Co, Gd). J Power Sources 196:4747–4755CrossRef
Zurück zum Zitat Yang XK, Wang XY, Wei QL, Shu HB, Liu L, Yang SY, BA H, Song YF, Zou GS, Hu L, Yi LH (2012) Synthesis and characterization of a Li-rich layered cathode material Li1.15[(Mn1/3Ni1/3Co1/3)0.5(Ni1/4Mn3/4)0.5]0.85O2 with spherical core–shell structure. J Mater Chem 22:19666–19672CrossRef Yang XK, Wang XY, Wei QL, Shu HB, Liu L, Yang SY, BA H, Song YF, Zou GS, Hu L, Yi LH (2012) Synthesis and characterization of a Li-rich layered cathode material Li1.15[(Mn1/3Ni1/3Co1/3)0.5(Ni1/4Mn3/4)0.5]0.85O2 with spherical core–shell structure. J Mater Chem 22:19666–19672CrossRef
Zurück zum Zitat Yang XK, Wang XY, Zou GS, Hu L, Shu HB, Yang SY, Liu L, Hu H, Yuan H, BA H, Wei QL, Yi LH (2013) Spherical lithium-rich layered Li1.13[Mn0.534Ni0.233Co0.233]0.87O2 with concentration-gradient outer layer as high-performance cathodes for lithium ion batteries. J Power Sources 232:338–347CrossRef Yang XK, Wang XY, Zou GS, Hu L, Shu HB, Yang SY, Liu L, Hu H, Yuan H, BA H, Wei QL, Yi LH (2013) Spherical lithium-rich layered Li1.13[Mn0.534Ni0.233Co0.233]0.87O2 with concentration-gradient outer layer as high-performance cathodes for lithium ion batteries. J Power Sources 232:338–347CrossRef
Zurück zum Zitat Zhao TL, Li L, Chen RJ, HM W, Zhang XX, Chen S, Xie M, Wu F, Lu J, Amine K (2015) Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries. Nano Energy 15:164–176CrossRef Zhao TL, Li L, Chen RJ, HM W, Zhang XX, Chen S, Xie M, Wu F, Lu J, Amine K (2015) Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries. Nano Energy 15:164–176CrossRef
Metadaten
Titel
Hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 hollow spherical as cathode material for Li-ion battery
verfasst von
Yu Zhang
Tianjiao Zhu
Liu Lin
Mengwei Yuan
Huifeng Li
Genban Sun
Shulan Ma
Publikationsdatum
01.11.2017
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 11/2017
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-017-4033-1

Weitere Artikel der Ausgabe 11/2017

Journal of Nanoparticle Research 11/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.