Skip to main content
Erschienen in: Quantum Information Processing 3/2021

01.03.2021

Hierarchical Quantum Network using Hybrid Entanglement

verfasst von: Chitra Shukla, Priya Malpani, Kishore Thapliyal

Erschienen in: Quantum Information Processing | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The advent of a new kind of entangled state known as hybrid entangled state, i.e., entanglement between different degrees of freedom, makes it possible to perform various quantum computational and communication tasks with lesser amount of resources. Here, we aim to exploit the advantage of these entangled states in communication over quantum networks. Unfortunately, the entanglement shared over the network deteriorates due to its unavoidable interaction with surroundings. Thus, an entanglement concentration protocol is proposed to obtain a maximally entangled hybrid Omega-type state from the corresponding non-maximally entangled states. The advantage of the proposed entanglement concentration protocol is that it is feasible to implement this protocol with linear optical components and present technology. The corresponding linear optical quantum circuit is provided for experimental realizations, while the success probability of the concentration protocol is also reported. Thereafter, we propose an application of maximally entangled hybrid state in the hierarchical quantum teleportation network by performing information splitting using Omega-type state, which is also the first hierarchical quantum communication scheme in the hybrid domain so far. The present hybrid entangled state has advantage in circumventing Pauli operations on the coherent state by polarization rotation of single qubit, which can be performed with lesser errors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH
2.
Zurück zum Zitat Menicucci, N.C., Loock, P.V., Gu, M., Weedbrook, C., Ralph, T.C., Nielsen, M.A.: Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett. 97, 110501 (2006)ADSCrossRef Menicucci, N.C., Loock, P.V., Gu, M., Weedbrook, C., Ralph, T.C., Nielsen, M.A.: Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett. 97, 110501 (2006)ADSCrossRef
3.
Zurück zum Zitat Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetMATHCrossRef Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetMATHCrossRef
4.
Zurück zum Zitat Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)ADSMathSciNetMATHCrossRef Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)ADSMathSciNetMATHCrossRef
6.
Zurück zum Zitat Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391 (2014)ADSMathSciNetMATHCrossRef Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391 (2014)ADSMathSciNetMATHCrossRef
7.
Zurück zum Zitat Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 295 (2017)ADSMathSciNetMATHCrossRef Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 295 (2017)ADSMathSciNetMATHCrossRef
9.
Zurück zum Zitat Long, G.-L., Deng, F.-G., Wang, C., Li, X.-H., Wen, K., Wang, W.-Y.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2, 251 (2007)ADSCrossRef Long, G.-L., Deng, F.-G., Wang, C., Li, X.-H., Wen, K., Wang, W.-Y.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2, 251 (2007)ADSCrossRef
10.
Zurück zum Zitat Shukla, C., Banerjee, A., Pathak, A., Srikanth, R.: Secure quantum communication with orthogonal states. Int. J. Quantum Inf. 14, 1640021 (2016)MathSciNetMATHCrossRef Shukla, C., Banerjee, A., Pathak, A., Srikanth, R.: Secure quantum communication with orthogonal states. Int. J. Quantum Inf. 14, 1640021 (2016)MathSciNetMATHCrossRef
12.
Zurück zum Zitat Pirandola, S.: End-to-end capacities of a quantum communication network. Comm. Phys. 2, 51 (2019)ADSCrossRef Pirandola, S.: End-to-end capacities of a quantum communication network. Comm. Phys. 2, 51 (2019)ADSCrossRef
13.
Zurück zum Zitat Morin, O., Huang, K., Liu, J., Jeannic, H.L., Fabre, C., Laurat, J.: Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nat. Photon. 8, 570–574 (2014)ADSCrossRef Morin, O., Huang, K., Liu, J., Jeannic, H.L., Fabre, C., Laurat, J.: Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nat. Photon. 8, 570–574 (2014)ADSCrossRef
14.
15.
Zurück zum Zitat Li, W.-L., Li, C.-F., Guo, G.-C.: Probabilistic teleportation and entanglement Matching. Phys. Rev. A 61, 034301 (2000)ADSCrossRef Li, W.-L., Li, C.-F., Guo, G.-C.: Probabilistic teleportation and entanglement Matching. Phys. Rev. A 61, 034301 (2000)ADSCrossRef
16.
Zurück zum Zitat Shukla, C., Thapliyal, K., Pathak, A.: Hierarchical joint remote state preparation in noisy environment. Quantum Inf. Process. 16, 205 (2017)ADSMathSciNetMATHCrossRef Shukla, C., Thapliyal, K., Pathak, A.: Hierarchical joint remote state preparation in noisy environment. Quantum Inf. Process. 16, 205 (2017)ADSMathSciNetMATHCrossRef
17.
Zurück zum Zitat Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)MATHCrossRef Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)MATHCrossRef
18.
Zurück zum Zitat Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)ADSCrossRef Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)ADSCrossRef
19.
Zurück zum Zitat Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., et al.: Purification of noisy entanglement and faithful teleportation via noisy channel. Phys. Rev. Lett. 76, 722–725 (1996)ADSCrossRef Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., et al.: Purification of noisy entanglement and faithful teleportation via noisy channel. Phys. Rev. Lett. 76, 722–725 (1996)ADSCrossRef
20.
Zurück zum Zitat Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194–197 (1999)ADSCrossRef Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194–197 (1999)ADSCrossRef
21.
Zurück zum Zitat Zhao, Z., Pan, J.-W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)ADSCrossRef Zhao, Z., Pan, J.-W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)ADSCrossRef
22.
Zurück zum Zitat Sheng, Y.-B., Zhou, L., Zhao, S.-M., Zheng, B.-Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)ADSCrossRef Sheng, Y.-B., Zhou, L., Zhao, S.-M., Zheng, B.-Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)ADSCrossRef
23.
Zurück zum Zitat Shukla, C., Banerjee, A., Pathak, A.: Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and 9 families of 4-qubit entangled states. Quantum Inf. Process. 14, 2077 (2015)ADSMATHCrossRef Shukla, C., Banerjee, A., Pathak, A.: Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and 9 families of 4-qubit entangled states. Quantum Inf. Process. 14, 2077 (2015)ADSMATHCrossRef
24.
Zurück zum Zitat Liu, J., Zhou, L., Zhong, W., Sheng, Y.-B.: Logic Bell state concentration with parity check measurement. Front. Phys. 14, 21601 (2019)ADSCrossRef Liu, J., Zhou, L., Zhong, W., Sheng, Y.-B.: Logic Bell state concentration with parity check measurement. Front. Phys. 14, 21601 (2019)ADSCrossRef
25.
Zurück zum Zitat Wang, X., Hu, Z.-N.: Entanglement concentration for photon systems assisted with single photons. Optik. Int. J. Light Electr. Opt. 176, 143–151 (2019)CrossRef Wang, X., Hu, Z.-N.: Entanglement concentration for photon systems assisted with single photons. Optik. Int. J. Light Electr. Opt. 176, 143–151 (2019)CrossRef
26.
Zurück zum Zitat Pan, J.-W., Simon, C., Brukner, C., Zeilinger, A.: Entanglement purification for quantum communication. Nature 410, 1067 (2001)ADSCrossRef Pan, J.-W., Simon, C., Brukner, C., Zeilinger, A.: Entanglement purification for quantum communication. Nature 410, 1067 (2001)ADSCrossRef
27.
Zurück zum Zitat Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)ADSCrossRef Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)ADSCrossRef
28.
Zurück zum Zitat Zwerger, M., Briegel, H.J., Dur, W.: Universal and optimal error thresholds for measurement-based entanglement purification. Phys. Rev. Lett. 110, 260503 (2013)ADSCrossRef Zwerger, M., Briegel, H.J., Dur, W.: Universal and optimal error thresholds for measurement-based entanglement purification. Phys. Rev. Lett. 110, 260503 (2013)ADSCrossRef
29.
Zurück zum Zitat Zhou, L., Sheng, Y.-B.: Purification of logic-qubit entanglement. Sci. Rep. 6, 28813 (2016)ADSCrossRef Zhou, L., Sheng, Y.-B.: Purification of logic-qubit entanglement. Sci. Rep. 6, 28813 (2016)ADSCrossRef
31.
Zurück zum Zitat Yukawa, M., Ukai, R., van Loock, P., Furusawa, A.: Experimental generation of four-mode continuous-variable cluster states. Phys. Rev. A 78, 012301 (2008)ADSMATHCrossRef Yukawa, M., Ukai, R., van Loock, P., Furusawa, A.: Experimental generation of four-mode continuous-variable cluster states. Phys. Rev. A 78, 012301 (2008)ADSMATHCrossRef
32.
Zurück zum Zitat Su, X., Tan, A., Jia, X., Zhang, J., Xie, C., Peng, K.: Experimental preparation of quadripartite cluster and Greenberger-Horne-Zeilinger entangled states for continuous variables. Phys. Rev. Lett. 98, 070502 (2007)ADSCrossRef Su, X., Tan, A., Jia, X., Zhang, J., Xie, C., Peng, K.: Experimental preparation of quadripartite cluster and Greenberger-Horne-Zeilinger entangled states for continuous variables. Phys. Rev. Lett. 98, 070502 (2007)ADSCrossRef
33.
Zurück zum Zitat Luiz, F.S., Rigolin, G.: Teleportation-based continuous variable quantum cryptography. Quantum Inf. Process. 16, 58 (2017)ADSMATHCrossRef Luiz, F.S., Rigolin, G.: Teleportation-based continuous variable quantum cryptography. Quantum Inf. Process. 16, 58 (2017)ADSMATHCrossRef
34.
Zurück zum Zitat Weedbrook, C., Pirandola, S., Garcia-Patron, R., Cerf, N.J., et al.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)ADSCrossRef Weedbrook, C., Pirandola, S., Garcia-Patron, R., Cerf, N.J., et al.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)ADSCrossRef
35.
Zurück zum Zitat An, N.B.: Optimal processing of quantum information via W-type entangled coherent states. Phys. Rev. A 69, 022315 (2004)ADSCrossRef An, N.B.: Optimal processing of quantum information via W-type entangled coherent states. Phys. Rev. A 69, 022315 (2004)ADSCrossRef
36.
Zurück zum Zitat Sheng, Y.-B., Liu, J., Zhao, S.-Y., Wang, L., Zhou, L.: Entanglement concentration for W-type entangled coherent states. Chin. Phys. B 23, 080305 (2014)ADSCrossRef Sheng, Y.-B., Liu, J., Zhao, S.-Y., Wang, L., Zhou, L.: Entanglement concentration for W-type entangled coherent states. Chin. Phys. B 23, 080305 (2014)ADSCrossRef
37.
Zurück zum Zitat Sisodia, M., Shukla, C., Long, G.L.: Linear optics-based entanglement concentration protocols for cluster-type entangled coherent state. Quantum Inf. Process. 18, 253 (2019)ADSMathSciNetCrossRef Sisodia, M., Shukla, C., Long, G.L.: Linear optics-based entanglement concentration protocols for cluster-type entangled coherent state. Quantum Inf. Process. 18, 253 (2019)ADSMathSciNetCrossRef
38.
Zurück zum Zitat Zhao, Z., Yang, T., Chen, Y.-A., Zhang, A.-N., Pan, J.-W.: Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90, 207901 (2003)ADSCrossRef Zhao, Z., Yang, T., Chen, Y.-A., Zhang, A.-N., Pan, J.-W.: Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90, 207901 (2003)ADSCrossRef
39.
Zurück zum Zitat Chen, L.-K., Yong, H.-L., Xu, P., et al.: Experimental nested purification for a linear optical quantum repeater. Nat. Photon. 11, 695–699 (2017)ADSCrossRef Chen, L.-K., Yong, H.-L., Xu, P., et al.: Experimental nested purification for a linear optical quantum repeater. Nat. Photon. 11, 695–699 (2017)ADSCrossRef
40.
Zurück zum Zitat van Loock, P., Ladd, T.D., Sanaka, K., Yamaguchi, F., Nemoto, K., Munro, W.J., Yamamoto, Y.: Hybrid quantum repeater using bright coherent light. Phys. Rev. Lett. 96, 240501 (2006)CrossRef van Loock, P., Ladd, T.D., Sanaka, K., Yamaguchi, F., Nemoto, K., Munro, W.J., Yamamoto, Y.: Hybrid quantum repeater using bright coherent light. Phys. Rev. Lett. 96, 240501 (2006)CrossRef
41.
Zurück zum Zitat Jeong, H., Zavatta, A., Kang, M., Lee, S.-W., Costanzo, L.S., Grandi, S., Ralph, T.C., Bellini, M.: Generation of hybrid entanglement of light. Nat. Photon. 8, 564–569 (2014)ADSCrossRef Jeong, H., Zavatta, A., Kang, M., Lee, S.-W., Costanzo, L.S., Grandi, S., Ralph, T.C., Bellini, M.: Generation of hybrid entanglement of light. Nat. Photon. 8, 564–569 (2014)ADSCrossRef
42.
Zurück zum Zitat Kwon, H., Jeong, H.: Generation of hybrid entanglement between a single-photon polarization qubit and a coherent state. Phys. Rev. A 91, 012340 (2015)ADSCrossRef Kwon, H., Jeong, H.: Generation of hybrid entanglement between a single-photon polarization qubit and a coherent state. Phys. Rev. A 91, 012340 (2015)ADSCrossRef
43.
Zurück zum Zitat Podoshvedov, S.A., Nguyen, B.A.: Designs of interactions between discrete- and continuous-variable states for generation of hybrid entanglement. Quantum Inf. Process. 18, 68 (2019)ADSMathSciNetMATHCrossRef Podoshvedov, S.A., Nguyen, B.A.: Designs of interactions between discrete- and continuous-variable states for generation of hybrid entanglement. Quantum Inf. Process. 18, 68 (2019)ADSMathSciNetMATHCrossRef
44.
Zurück zum Zitat Lee, S.-W., Jeong, H.: Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A 87, 022326 (2013)ADSCrossRef Lee, S.-W., Jeong, H.: Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A 87, 022326 (2013)ADSCrossRef
45.
Zurück zum Zitat Brask, J.B., Rigas, I., Polzik, E.S., Andersen, U.L., Sørensen, A.S.: Hybrid long-distance entanglement distribution protocol. Phys. Rev. Lett. 105, 160501 (2010)ADSCrossRef Brask, J.B., Rigas, I., Polzik, E.S., Andersen, U.L., Sørensen, A.S.: Hybrid long-distance entanglement distribution protocol. Phys. Rev. Lett. 105, 160501 (2010)ADSCrossRef
46.
Zurück zum Zitat Andersen, U.L., Neergaard-Nielsen, J.S., van Loock, P., Furusawa, A.: Hybrid discrete- and continuous-variable quantum information. Nat. Phys. 11, 713–719 (2015)CrossRef Andersen, U.L., Neergaard-Nielsen, J.S., van Loock, P., Furusawa, A.: Hybrid discrete- and continuous-variable quantum information. Nat. Phys. 11, 713–719 (2015)CrossRef
47.
Zurück zum Zitat Ulanov, A.E., Sychev, D., Pushkina, A.A., Fedorov, I.A., Lvovsky, A.I.: Quantum teleportation between discrete and continuous encodings of an optical qubit. Phys. Rev. Lett. 118, 160501 (2017)ADSMathSciNetCrossRef Ulanov, A.E., Sychev, D., Pushkina, A.A., Fedorov, I.A., Lvovsky, A.I.: Quantum teleportation between discrete and continuous encodings of an optical qubit. Phys. Rev. Lett. 118, 160501 (2017)ADSMathSciNetCrossRef
48.
Zurück zum Zitat Sychev, D.V., Ulanov, A.E., Tiunov, E.S., Pushkina, A.A., Kuzhamuratov, A., Novikov, V., Lvovsky, A.I.: Entanglement and teleportation between polarization and wave-like encodings of an optical qubit. Nat. Comm. 9, 3672 (2018)ADSCrossRef Sychev, D.V., Ulanov, A.E., Tiunov, E.S., Pushkina, A.A., Kuzhamuratov, A., Novikov, V., Lvovsky, A.I.: Entanglement and teleportation between polarization and wave-like encodings of an optical qubit. Nat. Comm. 9, 3672 (2018)ADSCrossRef
49.
Zurück zum Zitat Jeannic, H.L., Cavailles, A., Raskop, J., Huang, K., Laurat, J.: Remote preparation of continuous-variable qubits using loss-tolerant hybrid entanglement of light. Optica 5, 1012–1015 (2018)ADSCrossRef Jeannic, H.L., Cavailles, A., Raskop, J., Huang, K., Laurat, J.: Remote preparation of continuous-variable qubits using loss-tolerant hybrid entanglement of light. Optica 5, 1012–1015 (2018)ADSCrossRef
50.
Zurück zum Zitat Podoshvedov, S.A.: Efficient quantum teleportation of unknown qubit based on DV-CV interaction mechanism. Entropy 21, 150 (2019)ADSMathSciNetCrossRef Podoshvedov, S.A.: Efficient quantum teleportation of unknown qubit based on DV-CV interaction mechanism. Entropy 21, 150 (2019)ADSMathSciNetCrossRef
51.
Zurück zum Zitat Guccione, G., Cavaill\(\grave{e}\)s, A., Darras, T., Jeannic, H.L, Raskop, J., Huang, K., Laurat, J.: Quantum communication protocols based on hybrid entanglement of light. in Quantum Information and Measurement (QIM) V: Quantum Technologies, OSA Technical Digest (Optical Society of America, 2019), paper F5A.3 Guccione, G., Cavaill\(\grave{e}\)s, A., Darras, T., Jeannic, H.L, Raskop, J., Huang, K., Laurat, J.: Quantum communication protocols based on hybrid entanglement of light. in Quantum Information and Measurement (QIM) V: Quantum Technologies, OSA Technical Digest (Optical Society of America, 2019), paper F5A.3
52.
Zurück zum Zitat Jiao, X.-F., Zhou, P., Lv, S.-X., Wang, Z.-Y.: Remote preparation for single-photon two-qubit hybrid state with hyperentanglement via linear-optical elements. Sci. Rep. 9, 4663 (2019)ADSCrossRef Jiao, X.-F., Zhou, P., Lv, S.-X., Wang, Z.-Y.: Remote preparation for single-photon two-qubit hybrid state with hyperentanglement via linear-optical elements. Sci. Rep. 9, 4663 (2019)ADSCrossRef
53.
Zurück zum Zitat Sheng, Y.-B., Zhou, L., Long, G.-L.: Hybrid entanglement purification for quantum repeaters. Phys. Rev. A 88, 022302 (2013)ADSCrossRef Sheng, Y.-B., Zhou, L., Long, G.-L.: Hybrid entanglement purification for quantum repeaters. Phys. Rev. A 88, 022302 (2013)ADSCrossRef
54.
Zurück zum Zitat Guo, R., Zhou, L., Gu, S.-P., Wang, X.-F., Sheng, Y.-B.: Hybrid entanglement concentration assisted with single coherent state. Chin. Phys. B 25, 030302 (2016)CrossRef Guo, R., Zhou, L., Gu, S.-P., Wang, X.-F., Sheng, Y.-B.: Hybrid entanglement concentration assisted with single coherent state. Chin. Phys. B 25, 030302 (2016)CrossRef
55.
Zurück zum Zitat Wang, R., Wang, T.-J., Wang, C.: Entanglement purification and concentration based on hybrid spin entangled states of separate nitrogen-vacancy centers. EPL 126, 40006 (2019)ADSCrossRef Wang, R., Wang, T.-J., Wang, C.: Entanglement purification and concentration based on hybrid spin entangled states of separate nitrogen-vacancy centers. EPL 126, 40006 (2019)ADSCrossRef
56.
Zurück zum Zitat Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518 (2013)ADSMathSciNetMATHCrossRef Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518 (2013)ADSMathSciNetMATHCrossRef
58.
Zurück zum Zitat Mishra, S., Shukla, C., Pathak, A., Srikanth, R., Venugopalan, A.: An integrated hierarchical dynamic quantum secret sharing protocol. Int. J. Theor. Phys. 54, 3143–3154 (2015)MATHCrossRef Mishra, S., Shukla, C., Pathak, A., Srikanth, R., Venugopalan, A.: An integrated hierarchical dynamic quantum secret sharing protocol. Int. J. Theor. Phys. 54, 3143–3154 (2015)MATHCrossRef
59.
Zurück zum Zitat Omkar, S., Teo, Y.S., Jeong, H.: Resource-efficient topological fault-tolerant quantum computation with hybrid entanglement of light. Phys. Rev. Lett. 125, 060501 (2020)ADSCrossRef Omkar, S., Teo, Y.S., Jeong, H.: Resource-efficient topological fault-tolerant quantum computation with hybrid entanglement of light. Phys. Rev. Lett. 125, 060501 (2020)ADSCrossRef
60.
Zurück zum Zitat Verstraete, F., Dehaene, J., Moor, B.D., Verschelde, H.: Four qubits can be entangled in nine different ways. Phys. Rev. A 65, 052112 (2002)ADSMathSciNetCrossRef Verstraete, F., Dehaene, J., Moor, B.D., Verschelde, H.: Four qubits can be entangled in nine different ways. Phys. Rev. A 65, 052112 (2002)ADSMathSciNetCrossRef
61.
Zurück zum Zitat Pradhan, B., Agrawal, P., Pati, A.K.: Teleportation and superdense coding with genuine quadripartite entangled states. arXiv:0705.1917v1 (2007) Pradhan, B., Agrawal, P., Pati, A.K.: Teleportation and superdense coding with genuine quadripartite entangled states. arXiv:​0705.​1917v1 (2007)
62.
Zurück zum Zitat Nielsen, M.A.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436 (1999)ADSCrossRef Nielsen, M.A.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436 (1999)ADSCrossRef
63.
Zurück zum Zitat Chen, P.-X., Zhu, S.-Y., Guo, G.-C.: General form of genuine multipartite entanglement quantum channels for teleportation. Phy. Rev. A 74, 032324 (2006)ADSCrossRef Chen, P.-X., Zhu, S.-Y., Guo, G.-C.: General form of genuine multipartite entanglement quantum channels for teleportation. Phy. Rev. A 74, 032324 (2006)ADSCrossRef
64.
Zurück zum Zitat Banerjee, A., Shukla, C., Thapliyal, K., Pathak, A., Panigrahi, P.K.: Asymmetric quantum dialogue in noisy environment. Quantum Inf. Process. 16, 49 (2017)ADSMathSciNetMATHCrossRef Banerjee, A., Shukla, C., Thapliyal, K., Pathak, A., Panigrahi, P.K.: Asymmetric quantum dialogue in noisy environment. Quantum Inf. Process. 16, 49 (2017)ADSMathSciNetMATHCrossRef
Metadaten
Titel
Hierarchical Quantum Network using Hybrid Entanglement
verfasst von
Chitra Shukla
Priya Malpani
Kishore Thapliyal
Publikationsdatum
01.03.2021
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 3/2021
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-021-03057-5

Weitere Artikel der Ausgabe 3/2021

Quantum Information Processing 3/2021 Zur Ausgabe

Neuer Inhalt