Skip to main content
Erschienen in: Acta Mechanica Sinica 3/2015

01.06.2015 | Research Paper

Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell

verfasst von: Jingru Song, Cuncai Fan, Hansong Ma, Yueguang Wei

Erschienen in: Acta Mechanica Sinica | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated biomaterial is Hyriopsis cumingii, a typical limnetic shell, which consists of two different structural layers, a prismatic “pillar” structure and a nacreous “brick and mortar” structure. The prismatic layer looks like a “pillar forest” with variation-section pillars sized on the order of several tens of microns. The nacreous material looks like a “brick wall” with bricks sized on the order of several microns. Both pillars and bricks are composed of nanoparticles. The mechanical properties of the hierarchical biomaterial are measured by using the nanoindentation test. Hardness and modulus are measured for both the nacre layer and the prismatic layer, respectively. The nanoindentation size effects for the hierarchical structural materials are investigated experimentally. The results show that the prismatic nanostructured material has a higher stiffness and hardness than the nacre nanostructured material. In addition, the nanoindentation size effects for the hierarchical structural materials are described theoretically, by using the trans-scale mechanics theory considering both strain gradient effect and the surface/interface effect. The modeling results are consistent with experimental ones.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Xie, Z.Q., Yao, H.M.: Crack deflection and flaw tolerance in “brick-and-mortar” structured composites. Int. J. Appl. Mech. 6, 1450017 (2014)CrossRef Xie, Z.Q., Yao, H.M.: Crack deflection and flaw tolerance in “brick-and-mortar” structured composites. Int. J. Appl. Mech. 6, 1450017 (2014)CrossRef
2.
Zurück zum Zitat Shao, Y., Zhao, H.P., Feng, X.Q.: On flaw tolerance of nacre: a theoretical study. J. R. Soc. Interface 11, 20131016 (2014)CrossRef Shao, Y., Zhao, H.P., Feng, X.Q.: On flaw tolerance of nacre: a theoretical study. J. R. Soc. Interface 11, 20131016 (2014)CrossRef
3.
Zurück zum Zitat Xu, J., Zhao, X.L., Munroe, P., et al.: Synergistic toughening of hard, nacre-mimetic MoSi2 coatings by self-assembled hierarchical structure. Sci. Rep. 4, 4239 (2014) Xu, J., Zhao, X.L., Munroe, P., et al.: Synergistic toughening of hard, nacre-mimetic MoSi2 coatings by self-assembled hierarchical structure. Sci. Rep. 4, 4239 (2014)
4.
Zurück zum Zitat Brandt, K., Wolff, M.F.H., Salikov, V., et al.: A novel method for a multi-level hierarchical composite with brick-and-mortar structure. Sci. Rep. 3, 2322 (2013)CrossRef Brandt, K., Wolff, M.F.H., Salikov, V., et al.: A novel method for a multi-level hierarchical composite with brick-and-mortar structure. Sci. Rep. 3, 2322 (2013)CrossRef
5.
Zurück zum Zitat Ji, B.H., Gao, H.J.: Mechanical principles of biological nanocomposites. Annu. Rev. Mater. Res. 40, 77–100 (2010)CrossRef Ji, B.H., Gao, H.J.: Mechanical principles of biological nanocomposites. Annu. Rev. Mater. Res. 40, 77–100 (2010)CrossRef
6.
Zurück zum Zitat Bechtle, S., Ang, S.F., Schneider, G.A.: On the mechanical properties of hierarchically structured biological materials. Biomaterial 31, 6378–6385 (2010)CrossRef Bechtle, S., Ang, S.F., Schneider, G.A.: On the mechanical properties of hierarchically structured biological materials. Biomaterial 31, 6378–6385 (2010)CrossRef
7.
Zurück zum Zitat Ji, B.H., Gao, H.J.: Mechanical properties of nanostructure of biological materials. J. Mech. Phys. Solids 52, 1963–1990 (2004)MATHCrossRef Ji, B.H., Gao, H.J.: Mechanical properties of nanostructure of biological materials. J. Mech. Phys. Solids 52, 1963–1990 (2004)MATHCrossRef
8.
Zurück zum Zitat Weiner, S., Veis, A., Beniash, E., et al.: Peritubular dentin formation: crystal organization and the macromolecular constituents in human teeth. J. Struct. Biol. 126, 27–41 (1999)CrossRef Weiner, S., Veis, A., Beniash, E., et al.: Peritubular dentin formation: crystal organization and the macromolecular constituents in human teeth. J. Struct. Biol. 126, 27–41 (1999)CrossRef
9.
Zurück zum Zitat Tesch, W., Eidelman, N., Roschger, P., et al.: Graded microstructure and mechanical properties of human crown dentin. Calcif. Tissue Int. 69, 147–157 (2001)CrossRef Tesch, W., Eidelman, N., Roschger, P., et al.: Graded microstructure and mechanical properties of human crown dentin. Calcif. Tissue Int. 69, 147–157 (2001)CrossRef
10.
Zurück zum Zitat Landis, W.J.: The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone 16, 533–544 (1995)CrossRef Landis, W.J.: The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone 16, 533–544 (1995)CrossRef
11.
Zurück zum Zitat Rho, J.Y., Kuhn-Spearing, L., Zioupos, P.: Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92–102 (1998)CrossRef Rho, J.Y., Kuhn-Spearing, L., Zioupos, P.: Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92–102 (1998)CrossRef
12.
Zurück zum Zitat Weiner, S., Wagner, H.D.: The material bone: structure-mechanical function relations. Annu. Rev. Mater. Sci. 28, 271–298 (1998)CrossRef Weiner, S., Wagner, H.D.: The material bone: structure-mechanical function relations. Annu. Rev. Mater. Sci. 28, 271–298 (1998)CrossRef
13.
Zurück zum Zitat Taylor, J.D., Layman, M.: The mechanical properties of bivalve (Mollusca) shell structures. Palaeontology 15, 73–87 (1972) Taylor, J.D., Layman, M.: The mechanical properties of bivalve (Mollusca) shell structures. Palaeontology 15, 73–87 (1972)
14.
Zurück zum Zitat Currey, J.D., Taylor, J.D.: The mechanical behaviour of some molluscan hard tissues. J. Zool. 173, 395–406 (1974)CrossRef Currey, J.D., Taylor, J.D.: The mechanical behaviour of some molluscan hard tissues. J. Zool. 173, 395–406 (1974)CrossRef
15.
Zurück zum Zitat Currey, J.D.: Mechanical properties of mother of pearl in tension. Proc. R. Soc. Lond. B 196, 443–463 (1977)CrossRef Currey, J.D.: Mechanical properties of mother of pearl in tension. Proc. R. Soc. Lond. B 196, 443–463 (1977)CrossRef
16.
Zurück zum Zitat Kamat, S., Su, X., Ballarini, R., et al.: Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 405, 1036–1040 (2000) Kamat, S., Su, X., Ballarini, R., et al.: Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 405, 1036–1040 (2000)
17.
Zurück zum Zitat Jackson, A.P., Vincent, J.F.V., Turner, R.M.: The mechanical design of nacre. Proc. R. Soc. Lond. B 234, 415–440 (1988)CrossRef Jackson, A.P., Vincent, J.F.V., Turner, R.M.: The mechanical design of nacre. Proc. R. Soc. Lond. B 234, 415–440 (1988)CrossRef
18.
Zurück zum Zitat Menig, R., Meyers, M.H., Meyers, M.A., et al.: Quasi-static and dynamic mechanical of haliotis rufescens (abalone) shells. Acta Mater. 48, 2383–2398 (2000) Menig, R., Meyers, M.H., Meyers, M.A., et al.: Quasi-static and dynamic mechanical of haliotis rufescens (abalone) shells. Acta Mater. 48, 2383–2398 (2000)
19.
Zurück zum Zitat Menig, R., Meyers, M.H., Meyers, M.A., et al.: Quasi-static and dynamic mechanical response of Strombus gigas (conch) shells. Mater. Sci. Eng. A 297, 203–211 (2001) Menig, R., Meyers, M.H., Meyers, M.A., et al.: Quasi-static and dynamic mechanical response of Strombus gigas (conch) shells. Mater. Sci. Eng. A 297, 203–211 (2001)
20.
Zurück zum Zitat Almqvist, N., Thomson, N.H., Smith, B.L., et al.: Methods for fabricating and characterizing a new generation of biomimetic materials. Mater. Sci. Eng. C 7, 37–43 (1999)CrossRef Almqvist, N., Thomson, N.H., Smith, B.L., et al.: Methods for fabricating and characterizing a new generation of biomimetic materials. Mater. Sci. Eng. C 7, 37–43 (1999)CrossRef
21.
Zurück zum Zitat Jackson, A.P., Vincent, J.F.V.: Comparason of nacre with other ceramic composites. J. Mater. Sci. 25, 3173–3178 (1990)CrossRef Jackson, A.P., Vincent, J.F.V.: Comparason of nacre with other ceramic composites. J. Mater. Sci. 25, 3173–3178 (1990)CrossRef
22.
Zurück zum Zitat Wang, R.Z., Suo, Z., Evans, A.G., et al.: Deformation mechanisms in nacre. J. Mater. Res. 16, 2485–2493 (2001)CrossRef Wang, R.Z., Suo, Z., Evans, A.G., et al.: Deformation mechanisms in nacre. J. Mater. Res. 16, 2485–2493 (2001)CrossRef
23.
Zurück zum Zitat Evans, A.G., Suo, Z., Wang, R.Z., et al.: Model for the robust mechanical behavior of nacre. J. Mater. Res. 16, 2475–2484 (2001)CrossRef Evans, A.G., Suo, Z., Wang, R.Z., et al.: Model for the robust mechanical behavior of nacre. J. Mater. Res. 16, 2475–2484 (2001)CrossRef
24.
Zurück zum Zitat Song, F., Soh, A.K., Bai, Y.L.: Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 24, 3621–3631 (2003)CrossRef Song, F., Soh, A.K., Bai, Y.L.: Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 24, 3621–3631 (2003)CrossRef
25.
Zurück zum Zitat Song, F., Bai, Y.L.: Effects of Nanstructures on the fracture strength of the interfaces in nacre. J. Mater. Res. 18, 1741–1744 (2003)CrossRef Song, F., Bai, Y.L.: Effects of Nanstructures on the fracture strength of the interfaces in nacre. J. Mater. Res. 18, 1741–1744 (2003)CrossRef
26.
Zurück zum Zitat Katti, K.S., Katti, D.R., Pradhan, S.M., et al.: Platelet interlocks are the key to toughness and strength in nacre. J. Mater. Res. 20, 1097–1100 (2005) Katti, K.S., Katti, D.R., Pradhan, S.M., et al.: Platelet interlocks are the key to toughness and strength in nacre. J. Mater. Res. 20, 1097–1100 (2005)
27.
Zurück zum Zitat Barthelata, F., Tang, H., Zavattieri, P.D., et al.: On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J. Mech. Phys. Solids 55, 306–337 (2006)CrossRef Barthelata, F., Tang, H., Zavattieri, P.D., et al.: On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J. Mech. Phys. Solids 55, 306–337 (2006)CrossRef
28.
Zurück zum Zitat Zuo, S.C., Wei, Y.G.: Microstructure observation and mechanical behavior modeling for limnetic nacre. Acta Mech. Sin. 24, 83–89 (2008)CrossRef Zuo, S.C., Wei, Y.G.: Microstructure observation and mechanical behavior modeling for limnetic nacre. Acta Mech. Sin. 24, 83–89 (2008)CrossRef
29.
Zurück zum Zitat Wang, R.Z., Wen, H.B., Cui, F.Z., et al.: Observation of damage morphologies in nacre during deformation and fracture. J. Mater. Sci. 30, 2299–2304 (1995)CrossRef Wang, R.Z., Wen, H.B., Cui, F.Z., et al.: Observation of damage morphologies in nacre during deformation and fracture. J. Mater. Sci. 30, 2299–2304 (1995)CrossRef
30.
Zurück zum Zitat Li, X.D., Chang, W.C., Chao, Y.J., et al.: Nanoscale structural and mechanical characterization of a natural nanocomposite material: the shell of red abalone. Nano Lett. 4, 613–7 (2004)CrossRef Li, X.D., Chang, W.C., Chao, Y.J., et al.: Nanoscale structural and mechanical characterization of a natural nanocomposite material: the shell of red abalone. Nano Lett. 4, 613–7 (2004)CrossRef
31.
Zurück zum Zitat Bruet, B.J.F., Qi, H.J., Boyce, M.C., et al.: Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J. Mater. Res. 20, 2400–19 (2005)CrossRef Bruet, B.J.F., Qi, H.J., Boyce, M.C., et al.: Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J. Mater. Res. 20, 2400–19 (2005)CrossRef
32.
Zurück zum Zitat Katti, K.S., Mohanty, B., Katti, D.R.: Nanomechanical properties of nacre. J. Mater. Res. 21, 1237–1242 (2006)CrossRef Katti, K.S., Mohanty, B., Katti, D.R.: Nanomechanical properties of nacre. J. Mater. Res. 21, 1237–1242 (2006)CrossRef
33.
Zurück zum Zitat Sun, J.Y., Tong, J.: Fracture toughness properties of three different biomaterials measured by nanoindentation. J. Bionic Eng. 4, 11–17 (2007)MATHCrossRef Sun, J.Y., Tong, J.: Fracture toughness properties of three different biomaterials measured by nanoindentation. J. Bionic Eng. 4, 11–17 (2007)MATHCrossRef
34.
Zurück zum Zitat Fleischli, F.D., Dietiker, M., Borgia, C., et al.: The influence of internal length scales on mechanical properties in natural nanocomposites: a comparative study on inner layers of seashells. Acta Biomater. 4, 1694–1706 (2008)CrossRef Fleischli, F.D., Dietiker, M., Borgia, C., et al.: The influence of internal length scales on mechanical properties in natural nanocomposites: a comparative study on inner layers of seashells. Acta Biomater. 4, 1694–1706 (2008)CrossRef
35.
Zurück zum Zitat Gao, H.J.: Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. Int. J. Fract. 138, 101–137 (2006)MATHCrossRef Gao, H.J.: Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. Int. J. Fract. 138, 101–137 (2006)MATHCrossRef
36.
Zurück zum Zitat Zuo, S.C., Wei, Y.G.: Effective elastic modulus of bone-like hierarchical materials. Acta Mech. Solida Sin. 20, 198–205 (2007)CrossRef Zuo, S.C., Wei, Y.G.: Effective elastic modulus of bone-like hierarchical materials. Acta Mech. Solida Sin. 20, 198–205 (2007)CrossRef
37.
Zurück zum Zitat Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–83 (1992)CrossRef Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–83 (1992)CrossRef
38.
Zurück zum Zitat Wei, Y.G., Xu, G.: A multiscale model for the ductile fracture of crystalline materials. Int. J. Plast. 21, 2123–2149 (2005)MATHCrossRef Wei, Y.G., Xu, G.: A multiscale model for the ductile fracture of crystalline materials. Int. J. Plast. 21, 2123–2149 (2005)MATHCrossRef
39.
Zurück zum Zitat Wei, Y.G., Hutchinson, J.W.: Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity. J. Mech. Phys. Solids 45, 1253–1273 (1997)MATHMathSciNetCrossRef Wei, Y.G., Hutchinson, J.W.: Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity. J. Mech. Phys. Solids 45, 1253–1273 (1997)MATHMathSciNetCrossRef
40.
Zurück zum Zitat Wei, Y.G.: A new finite element method for strain gradient theories and applications to fracture analyses. Eur. J. Mech. A/Solids 25, 897–913 (2006)MATHMathSciNetCrossRef Wei, Y.G.: A new finite element method for strain gradient theories and applications to fracture analyses. Eur. J. Mech. A/Solids 25, 897–913 (2006)MATHMathSciNetCrossRef
41.
Zurück zum Zitat Wu, B., Liang, L.H., Ma, H.S., et al.: A trans-scale model for size effects and intergranular fracture in nanocrystalline and ultra-fine polycrystalline metals. Comput. Mater. Sci. 57, 2–7 (2012) Wu, B., Liang, L.H., Ma, H.S., et al.: A trans-scale model for size effects and intergranular fracture in nanocrystalline and ultra-fine polycrystalline metals. Comput. Mater. Sci. 57, 2–7 (2012)
42.
Zurück zum Zitat Song, J.R., Liu, J.Y., Ma, H.S., et al.: Determinations of both length scales and surface elastic parameters for fcc metals. C. R. Mecanique 342, 315–325 (2014) Song, J.R., Liu, J.Y., Ma, H.S., et al.: Determinations of both length scales and surface elastic parameters for fcc metals. C. R. Mecanique 342, 315–325 (2014)
43.
Zurück zum Zitat Wei, Y.G., Wang, X.Z., Wu, X.L., et al.: Theoretical and experimental researches of size effect in micro-indentation test. Sci. China Ser. A 44, 74–82 (2001) Wei, Y.G., Wang, X.Z., Wu, X.L., et al.: Theoretical and experimental researches of size effect in micro-indentation test. Sci. China Ser. A 44, 74–82 (2001)
Metadaten
Titel
Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell
verfasst von
Jingru Song
Cuncai Fan
Hansong Ma
Yueguang Wei
Publikationsdatum
01.06.2015
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 3/2015
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-015-0405-x

Weitere Artikel der Ausgabe 3/2015

Acta Mechanica Sinica 3/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.