Skip to main content
Erschienen in: Journal of Materials Science 5/2019

05.11.2018 | Review

High-capacity lithium sulfur battery and beyond: a review of metal anode protection layers and perspective of solid-state electrolytes

verfasst von: Yang Wang, Emily Sahadeo, Gary Rubloff, Chuan-Fu Lin, Sang Bok Lee

Erschienen in: Journal of Materials Science | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Li metal has the highest specific capacity (3860 mA h g−1) and the lowest electrochemical potential (− 3.04 V vs. SHE) of available metal anodes. Together with the high specific capacity of sulfur cathodes (1670 mA h g−1), Li metal–S batteries are a promising candidate to achieve high energy density batteries for electric vehicles and future industry. However, Li metal anodes suffer from corrosive reactions with electrolytes, a theoretically infinite volume change, and the growth of dendrites during electrochemical cycling. To realize the practical application of Li metal–S batteries, protective layers or artificial solid-electrolyte interphase (ASEI) layers have been applied to the surface of Li metal. These ASEI layers demonstrate capabilities to suppress the growth of dendrites and mitigate side reactions, which enhance the performance and safety of Li metal anodes in liquid-electrolyte systems, though there are still limitations and challenges. The development of solid-state electrolytes as artificial SEIs provides a promising route to suppress the issues of dendrite formation and the polysulfide “shuttle effect” in Li–S chemistry; however, the improvement in the interfacial compatibility and stability between the Li metal and the solid-state electrolyte is crucially needed. In this review, we summarize different types of ASEI layers used to protect Li metal, especially in Li–S batteries, with both liquid- and solid-electrolyte systems. We also briefly introduce the concept of anode protection of Mg metal and its application in Mg–S batteries. Perspectives regarding the further development and improvement of ASEI layers for Li metal and Mg metal are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
10.
Zurück zum Zitat Mikhaylik Y (2006) Methods of charging lithium sulfur cells. Google Patents Mikhaylik Y (2006) Methods of charging lithium sulfur cells. Google Patents
22.
Zurück zum Zitat Chen L, Connell JG, Nie A, Huang Z, Zavadil KR, Klavetter KC, Yuan Y, Sharifi-Asl S, Shahbazian-Yassar R, Libera JA, Mane AU, Elam JW (2017) Lithium metal protected by atomic layer deposition metal oxide for high performance anodes. J Mater Chem A 5(24):12297–12309. https://doi.org/10.1039/C7TA03116E CrossRef Chen L, Connell JG, Nie A, Huang Z, Zavadil KR, Klavetter KC, Yuan Y, Sharifi-Asl S, Shahbazian-Yassar R, Libera JA, Mane AU, Elam JW (2017) Lithium metal protected by atomic layer deposition metal oxide for high performance anodes. J Mater Chem A 5(24):12297–12309. https://​doi.​org/​10.​1039/​C7TA03116E CrossRef
25.
Zurück zum Zitat Jing HK, Kong LL, Liu S, Li GR, Gao XP (2015) Protected lithium anode with porous Al2O3 layer for lithium–sulfur battery. J Mater Chem A 3(23):12213–12219CrossRef Jing HK, Kong LL, Liu S, Li GR, Gao XP (2015) Protected lithium anode with porous Al2O3 layer for lithium–sulfur battery. J Mater Chem A 3(23):12213–12219CrossRef
27.
Zurück zum Zitat Kanamura K, Shiraishi S, Zi Takehara (1996) Electrochemical deposition of very smooth lithium using nonaqueous electrolytes containing HF. J Electrochem Soc 143(7):2187–2197CrossRef Kanamura K, Shiraishi S, Zi Takehara (1996) Electrochemical deposition of very smooth lithium using nonaqueous electrolytes containing HF. J Electrochem Soc 143(7):2187–2197CrossRef
50.
Zurück zum Zitat Gu Y, Wang W-W, Li Y-J, Wu Q-H, Tang S, Yan J-W, Zheng M-S, Wu D-Y, Fan C-H, Hu W-Q, Chen Z-B, Fang Y, Zhang Q-H, Dong Q-F, Mao B-W (2018) Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes. Nat Commun 9(1):1339-1–1339-9. https://doi.org/10.1038/s41467-018-03466-8 CrossRef Gu Y, Wang W-W, Li Y-J, Wu Q-H, Tang S, Yan J-W, Zheng M-S, Wu D-Y, Fan C-H, Hu W-Q, Chen Z-B, Fang Y, Zhang Q-H, Dong Q-F, Mao B-W (2018) Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes. Nat Commun 9(1):1339-1–1339-9. https://​doi.​org/​10.​1038/​s41467-018-03466-8 CrossRef
57.
Zurück zum Zitat Liu Y, Lin D, Yuen Pak Y, Liu K, Xie J, Dauskardt Reinhold H, Cui Y (2016) An artificial solid electrolyte interphase with high li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv Mater 29(10):1605531-1–1605531-8. https://doi.org/10.1002/adma.201605531 CrossRef Liu Y, Lin D, Yuen Pak Y, Liu K, Xie J, Dauskardt Reinhold H, Cui Y (2016) An artificial solid electrolyte interphase with high li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv Mater 29(10):1605531-1–1605531-8. https://​doi.​org/​10.​1002/​adma.​201605531 CrossRef
59.
Zurück zum Zitat Yan K, Lee H-W, Gao T, Zheng G, Yao H, Wang H, Lu Z, Zhou Y, Liang Z, Liu Z, Chu S, Cui Y (2014) Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett 14(10):6016–6022. https://doi.org/10.1021/nl503125u CrossRef Yan K, Lee H-W, Gao T, Zheng G, Yao H, Wang H, Lu Z, Zhou Y, Liang Z, Liu Z, Chu S, Cui Y (2014) Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett 14(10):6016–6022. https://​doi.​org/​10.​1021/​nl503125u CrossRef
65.
Zurück zum Zitat Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen X, Shao Y, Engelhard MH, Nie Z, Xiao J, Liu X, Sushko PV, Liu J, Zhang J-G (2013) Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc 135(11):4450–4456. https://doi.org/10.1021/ja312241y CrossRef Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen X, Shao Y, Engelhard MH, Nie Z, Xiao J, Liu X, Sushko PV, Liu J, Zhang J-G (2013) Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc 135(11):4450–4456. https://​doi.​org/​10.​1021/​ja312241y CrossRef
67.
70.
Zurück zum Zitat Monroe C, Newman J (2005) The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc 152(2):A396–A404CrossRef Monroe C, Newman J (2005) The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc 152(2):A396–A404CrossRef
73.
Zurück zum Zitat Fu K, Gong Y, Liu B, Zhu Y, Xu S, Yao Y, Luo W, Wang C, Lacey SD, Dai J, Chen Y, Mo Y, Wachsman E, Hu L (2017) Toward garnet electrolyte–based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci Adv 3(4):e1601659CrossRef Fu K, Gong Y, Liu B, Zhu Y, Xu S, Yao Y, Luo W, Wang C, Lacey SD, Dai J, Chen Y, Mo Y, Wachsman E, Hu L (2017) Toward garnet electrolyte–based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci Adv 3(4):e1601659CrossRef
80.
Zurück zum Zitat Ha S-Y, Lee Y-W, Woo SW, Koo B, Kim J-S, Cho J, Lee KT, Choi N-S (2014) Magnesium(II) bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. ACS Appl Mater Interfaces 6(6):4063–4073. https://doi.org/10.1021/am405619v CrossRef Ha S-Y, Lee Y-W, Woo SW, Koo B, Kim J-S, Cho J, Lee KT, Choi N-S (2014) Magnesium(II) bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. ACS Appl Mater Interfaces 6(6):4063–4073. https://​doi.​org/​10.​1021/​am405619v CrossRef
83.
Zurück zum Zitat Wetzel DJ, Malone MA, Haasch RT, Meng Y, Vieker H, Hahn NT, Gölzhäuser A, Zuo J-M, Zavadil KR, Gewirth AA, Nuzzo RG (2015) Passivation dynamics in the anisotropic deposition and stripping of bulk magnesium electrodes during electrochemical cycling. ACS Appl Mater Interfaces 7(33):18406–18414. https://doi.org/10.1021/acsami.5b04487 CrossRef Wetzel DJ, Malone MA, Haasch RT, Meng Y, Vieker H, Hahn NT, Gölzhäuser A, Zuo J-M, Zavadil KR, Gewirth AA, Nuzzo RG (2015) Passivation dynamics in the anisotropic deposition and stripping of bulk magnesium electrodes during electrochemical cycling. ACS Appl Mater Interfaces 7(33):18406–18414. https://​doi.​org/​10.​1021/​acsami.​5b04487 CrossRef
84.
Zurück zum Zitat Ding MS, Diemant T, Behm RJ, Passerini S, Giffin GA (2018) Dendrite growth in Mg metal cells containing Mg(TFSI)2/glyme electrolytes. J Electrochem Soc 165(10):A1983–A1990CrossRef Ding MS, Diemant T, Behm RJ, Passerini S, Giffin GA (2018) Dendrite growth in Mg metal cells containing Mg(TFSI)2/glyme electrolytes. J Electrochem Soc 165(10):A1983–A1990CrossRef
85.
Zurück zum Zitat Kuwata H, Matsui M, Imanishi N (2017) Passivation layer formation of magnesium metal negative electrodes for rechargeable magnesium batteries. J Electrochem Soc 164(13):A3229–A3236CrossRef Kuwata H, Matsui M, Imanishi N (2017) Passivation layer formation of magnesium metal negative electrodes for rechargeable magnesium batteries. J Electrochem Soc 164(13):A3229–A3236CrossRef
Metadaten
Titel
High-capacity lithium sulfur battery and beyond: a review of metal anode protection layers and perspective of solid-state electrolytes
verfasst von
Yang Wang
Emily Sahadeo
Gary Rubloff
Chuan-Fu Lin
Sang Bok Lee
Publikationsdatum
05.11.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 5/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-3093-7

Weitere Artikel der Ausgabe 5/2019

Journal of Materials Science 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.