Skip to main content

2020 | OriginalPaper | Buchkapitel

High Cycle Fatigue and Fatigue Crack Growth Rate in Additive Manufactured Titanium Alloys

verfasst von : Xiang Zhang, Abdul Khadar Syed, Romali Biswal, Filomeno Martina, Jialuo Ding, Stewart Williams

Erschienen in: ICAF 2019 – Structural Integrity in the Age of Additive Manufacturing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Wire + Arc Additive Manufacture (WAAM) process can produce large metal parts in the metre scale, at much higher deposition rate and more efficient material usage compared to the powder bed fusion additive manufacturing (AM) processes. WAAM process also offers lead time reduction and much lower buy-to-fly ratio compared to traditional process methods, e.g. forgings. Research is much needed in the areas of fatigue and fracture performance for qualification and certification of additive manufactured aircraft components.
In this study, specimens made of WAAM Ti-6Al-4V alloy were tested and analysed focusing on two key areas of structural integrity and durability:
(1) High cycle fatigue and effect of defects: crack initiation at porosity defects was investigated via fatigue and interrupted fatigue-tomography testing performed on specimens with porosity defects purposely embedded in the specimen gauge section. Key findings are as follows. Presence of porosity did not affect the tensile strengths, however both ductility and fatigue strength were significantly reduced. Fatigue life could not be correlated by the applied stress, e.g. in terms of the S-N curves, owing to the different pore sizes. Using the fracture mechanics approach and Murakami’s stress intensity factor equation for pores, good correlation was found between the fatigue life and stress intensity factor range of the crack initiating defects. Predictive methods for fatigue strength reduction were developed taking account of the defect size, location, and distribution.
(2) Fatigue crack growth rate: effect of heterogeneous microstructure was investigated via two different material deposition methods and testing two crack orientations. Fatigue crack growth rates were measured for damage tolerance design considerations. Unique microstructure features and their effect on the property anisotropy are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Åkerfeldt, P., Antti, M.L., Pederson, R.: Influence of microstructure on mechanical properties of laser metal wire-deposited Ti-6Al-4V. Mater. Sci. Eng. A 674, 428–437 (2016)CrossRef Åkerfeldt, P., Antti, M.L., Pederson, R.: Influence of microstructure on mechanical properties of laser metal wire-deposited Ti-6Al-4V. Mater. Sci. Eng. A 674, 428–437 (2016)CrossRef
Zurück zum Zitat Bagehorn, S., Wehr, J., Maier, H.J.: Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti-6Al-4V parts. Int. J. Fatigue 102, 135–142 (2017)CrossRef Bagehorn, S., Wehr, J., Maier, H.J.: Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti-6Al-4V parts. Int. J. Fatigue 102, 135–142 (2017)CrossRef
Zurück zum Zitat Bermingham, M.J., Kent, D., et al.: Controlling the microstructure and properties of wire arc additive manufactured Ti-6Al-4V with trace boron additions. Acta Mater. 91, 289–303 (2015)CrossRef Bermingham, M.J., Kent, D., et al.: Controlling the microstructure and properties of wire arc additive manufactured Ti-6Al-4V with trace boron additions. Acta Mater. 91, 289–303 (2015)CrossRef
Zurück zum Zitat Biswal, R., Zhang, X., et al.: Criticality of porosity defects on the fatigue performance of wire + arc additive manufactured titanium alloy. Int. J. Fatigue 122, 208–217 (2019)CrossRef Biswal, R., Zhang, X., et al.: Criticality of porosity defects on the fatigue performance of wire + arc additive manufactured titanium alloy. Int. J. Fatigue 122, 208–217 (2019)CrossRef
Zurück zum Zitat Brandl, E., Palm, F., et al.: Mechanical properties of additive manufactured titanium (Ti-6Al-4V) blocks deposited by a solid-state laser and wire. Mater. Des. 32(10), 4665–4675 (2011)CrossRef Brandl, E., Palm, F., et al.: Mechanical properties of additive manufactured titanium (Ti-6Al-4V) blocks deposited by a solid-state laser and wire. Mater. Des. 32(10), 4665–4675 (2011)CrossRef
Zurück zum Zitat Colegrove, P.A., Donoghue, J., et al.: Application of bulk deformation methods for microstructural and material property improvement and residual stress and distortion control in additively manufactured components. Scripta Mater. 135, 111–118 (2017)CrossRef Colegrove, P.A., Donoghue, J., et al.: Application of bulk deformation methods for microstructural and material property improvement and residual stress and distortion control in additively manufactured components. Scripta Mater. 135, 111–118 (2017)CrossRef
Zurück zum Zitat Günther, J., Krewerth, D., et al.: Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime. Int. J. Fatigue 94, 236–245 (2016)CrossRef Günther, J., Krewerth, D., et al.: Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime. Int. J. Fatigue 94, 236–245 (2016)CrossRef
Zurück zum Zitat Han, F., Tang, B., et al.: Cyclic softening behavior of Ti–6Al–4V alloy at macro and micro-scale. Mater. Lett. 185, 115–118 (2016)CrossRef Han, F., Tang, B., et al.: Cyclic softening behavior of Ti–6Al–4V alloy at macro and micro-scale. Mater. Lett. 185, 115–118 (2016)CrossRef
Zurück zum Zitat Ho, A., Zhao, H., et al.: On the origin of microstructural banding in Ti-6Al4V wire-arc based high deposition rate additive manufacturing. Acta. Mat. 166, 306–323 (2019)CrossRef Ho, A., Zhao, H., et al.: On the origin of microstructural banding in Ti-6Al4V wire-arc based high deposition rate additive manufacturing. Acta. Mat. 166, 306–323 (2019)CrossRef
Zurück zum Zitat Hönnige, J.R., Colegrove, P.A., et al.: Residual stress and texture control in Ti-6Al-4V wire + arc additively manufactured intersections by stress relief and rolling. Mater. Des. 150(2017), 193–205 (2018)CrossRef Hönnige, J.R., Colegrove, P.A., et al.: Residual stress and texture control in Ti-6Al-4V wire + arc additively manufactured intersections by stress relief and rolling. Mater. Des. 150(2017), 193–205 (2018)CrossRef
Zurück zum Zitat Hrabe, N., Gnaupel-Herold, T., Quinn, T.: Fatigue properties of a titanium alloy (Ti-6Al-4V) fabricated via electron beam melting (EBM): Effects of internal defects and residual stress. Int. J. Fatigue 94, 202–210 (2015)CrossRef Hrabe, N., Gnaupel-Herold, T., Quinn, T.: Fatigue properties of a titanium alloy (Ti-6Al-4V) fabricated via electron beam melting (EBM): Effects of internal defects and residual stress. Int. J. Fatigue 94, 202–210 (2015)CrossRef
Zurück zum Zitat Kahlin, M., Ansell, H., Moverare, J.J.: Fatigue behaviour of notched additive manufactured Ti6Al4V with as-built surfaces. Int. J. Fatigue 101, 51–60 (2017)CrossRef Kahlin, M., Ansell, H., Moverare, J.J.: Fatigue behaviour of notched additive manufactured Ti6Al4V with as-built surfaces. Int. J. Fatigue 101, 51–60 (2017)CrossRef
Zurück zum Zitat Leung, C.L.A., Marussi, S., et al.: In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing. Nature Communications. 9(1), 1–9 (2018)CrossRef Leung, C.L.A., Marussi, S., et al.: In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing. Nature Communications. 9(1), 1–9 (2018)CrossRef
Zurück zum Zitat Lorant, E.: Effect of microstructure on mechanical properties of Ti-6Al-4V structures made by additive layer manufacturing. MSc thesis, Cranfield University (2010) Lorant, E.: Effect of microstructure on mechanical properties of Ti-6Al-4V structures made by additive layer manufacturing. MSc thesis, Cranfield University (2010)
Zurück zum Zitat Lu, S.L., Tang, H.P., et al.: Microstructure and mechanical properties of long Ti-6Al-4V rods additively manufactured by selective electron beam melting out of a deep powder bed and the effect of subsequent hot isostatic pressing. Metall. Mater. Trans. A 46(9), 3824–3834 (2015)CrossRef Lu, S.L., Tang, H.P., et al.: Microstructure and mechanical properties of long Ti-6Al-4V rods additively manufactured by selective electron beam melting out of a deep powder bed and the effect of subsequent hot isostatic pressing. Metall. Mater. Trans. A 46(9), 3824–3834 (2015)CrossRef
Zurück zum Zitat Murakami, Y., Endo, M.: Effects of Hardness and Crack Geometries on ΔKth of Small Cracks Emanating from Small Defects. Mechanical Engineering Publications (1986) Murakami, Y., Endo, M.: Effects of Hardness and Crack Geometries on ΔKth of Small Cracks Emanating from Small Defects. Mechanical Engineering Publications (1986)
Zurück zum Zitat Seifi, M., Salem, A., et al.: Defect distribution and microstructure heterogeneity effects on fracture resistance and fatigue behavior of EBM Ti-6Al-4V. Int. J. Fatigue 94, 263–287 (2017)CrossRef Seifi, M., Salem, A., et al.: Defect distribution and microstructure heterogeneity effects on fracture resistance and fatigue behavior of EBM Ti-6Al-4V. Int. J. Fatigue 94, 263–287 (2017)CrossRef
Zurück zum Zitat Shui, X., Yamanaka, K., et al.: Effects of post processing on cyclic fatigue response of a titanium alloy additively manufactured by electron beam melting. Mater. Sci. Eng. A 680, 239–248 (2017)CrossRef Shui, X., Yamanaka, K., et al.: Effects of post processing on cyclic fatigue response of a titanium alloy additively manufactured by electron beam melting. Mater. Sci. Eng. A 680, 239–248 (2017)CrossRef
Zurück zum Zitat Sterling, A.J., Torries, B., et al.: Fatigue behavior and failure mechanisms of direct laser deposited Ti-6Al-4V. Mater. Sci. Eng. A 655, 100–112 (2016)CrossRef Sterling, A.J., Torries, B., et al.: Fatigue behavior and failure mechanisms of direct laser deposited Ti-6Al-4V. Mater. Sci. Eng. A 655, 100–112 (2016)CrossRef
Zurück zum Zitat Svensson, M., Ackelid, U.: Additive manufacturing of dense metal parts by electron beam melting. In: Material Science and Technology Conference, pp. 2711–2719 (2009) Svensson, M., Ackelid, U.: Additive manufacturing of dense metal parts by electron beam melting. In: Material Science and Technology Conference, pp. 2711–2719 (2009)
Zurück zum Zitat Tammas-Williams, S., Withers, P.J., et al.: The influence of porosity on fatigue crack initiation in additively manufactured titanium components. Scientific Reports 7(1), 1–13 (2017)CrossRef Tammas-Williams, S., Withers, P.J., et al.: The influence of porosity on fatigue crack initiation in additively manufactured titanium components. Scientific Reports 7(1), 1–13 (2017)CrossRef
Zurück zum Zitat Tan, C., Sun, Q., et al.: Cyclic deformation and microcrack initiation during stress controlled high cycle fatigue of a titanium alloy. Mater. Sci. Eng. A 711, 212–222 (2018)CrossRef Tan, C., Sun, Q., et al.: Cyclic deformation and microcrack initiation during stress controlled high cycle fatigue of a titanium alloy. Mater. Sci. Eng. A 711, 212–222 (2018)CrossRef
Zurück zum Zitat Wang, F., Williams, S., et al.: Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V. Metall. Mater. Trans. A 44(2), 968–977 (2013)CrossRef Wang, F., Williams, S., et al.: Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V. Metall. Mater. Trans. A 44(2), 968–977 (2013)CrossRef
Zurück zum Zitat Williams, S.W., Martina, F., et al.: Wire + Arc Additive Manufacturing. Mater. Sci. Technol. 32(7), 641–647 (2016)CrossRef Williams, S.W., Martina, F., et al.: Wire + Arc Additive Manufacturing. Mater. Sci. Technol. 32(7), 641–647 (2016)CrossRef
Zurück zum Zitat Wycisk, E., Solbach, A., et al.: Effects of defects in laser additive manufactured Ti-6Al-4V on fatigue properties. Phys. Procedia 56, 371–378 (2014)CrossRef Wycisk, E., Solbach, A., et al.: Effects of defects in laser additive manufactured Ti-6Al-4V on fatigue properties. Phys. Procedia 56, 371–378 (2014)CrossRef
Zurück zum Zitat Xie, Y., Gao, M., et al.: Anisotropy of fatigue crack growth in wire arc additive manufactured Ti-6Al-4V. Mater. Sci. Eng. A 709, 265–269 (2018)CrossRef Xie, Y., Gao, M., et al.: Anisotropy of fatigue crack growth in wire arc additive manufactured Ti-6Al-4V. Mater. Sci. Eng. A 709, 265–269 (2018)CrossRef
Zurück zum Zitat Zhang, J., Wang, X., et al.: Fatigue crack propagation behaviour in wire + arc additive manufactured Ti-6Al-4V: effects of microstructure and residual stress. Mater. Des. 90, 551–561 (2016)CrossRef Zhang, J., Wang, X., et al.: Fatigue crack propagation behaviour in wire + arc additive manufactured Ti-6Al-4V: effects of microstructure and residual stress. Mater. Des. 90, 551–561 (2016)CrossRef
Zurück zum Zitat Zhang, X., Martina, F., et al. Fatigue crack growth in additive manufactured titanium: residual stress control and life evaluation method development. In: 29th ICAF Symposium. Nagoya, 7–9 June 2017 Zhang, X., Martina, F., et al. Fatigue crack growth in additive manufactured titanium: residual stress control and life evaluation method development. In: 29th ICAF Symposium. Nagoya, 7–9 June 2017
Metadaten
Titel
High Cycle Fatigue and Fatigue Crack Growth Rate in Additive Manufactured Titanium Alloys
verfasst von
Xiang Zhang
Abdul Khadar Syed
Romali Biswal
Filomeno Martina
Jialuo Ding
Stewart Williams
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-21503-3_3

    Premium Partner