Skip to main content
Erschienen in: Wireless Personal Communications 2/2020

07.04.2020

High-Density Wavelength Multiplexing Model for THz-EMI Transmission

verfasst von: M. Bunruangses, K. Chaiwong, I. S. Amiri, P. Youplao, N. Pornsuwancharoen, P. Yupapin

Erschienen in: Wireless Personal Communications | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose the use of the specific form of the integrated device known as the boxcar filters for big data transmission, where the advantage of such device is the number of roll-off (bandwidth) can be increased to meet the large demand of the future bandwidth requirements. A boxcar filter system is formed by the serial Panda-ring resonators, where the initial and end rings are used to form the whispering gallery mode beams for the light fidelity (LiFi) up-down-link conversion. There are 5 boxcar circuits within the system. Each of boxcar devices has the electro-optic connection that can be used to perform the external signal processing applications, where all electronic signals are changed to be the light signals and connected to the network via the free-space up-down link nodes. In a simulation, the selected light source is fed into the boxcar filters via the input port, in which the single roll-off bandwidth of 300 THz is obtained. The frequency guard band is given by each boxcar separation. In applications, the electromagnetic immunity interference (EMI) signals can be obtained by the electro-optic conversion circuit, which is the medical instrument specification requirement. The low EMI signals can be connected to the network and transmission using the LiFi network to the remote area. In addition, the medical information to home using the big data via the ad hoc LiFi network and the internet of thing platform arrangements are also proposed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fusco, G., Bracci, A., Caligiuri, T., Colombaroni, C., & Isaenko, N. (2018). Experimental analyses and clustering of travel choice behaviours by floating car big data in a large urban area. IET Intelligent Transport Systems,12, 270–278.CrossRef Fusco, G., Bracci, A., Caligiuri, T., Colombaroni, C., & Isaenko, N. (2018). Experimental analyses and clustering of travel choice behaviours by floating car big data in a large urban area. IET Intelligent Transport Systems,12, 270–278.CrossRef
2.
Zurück zum Zitat Zhuang, Z., Ramachandra, H., & Xiong, C. (2015). Taming replication latency of big data events with capacity planning. Computer,48, 36–41.CrossRef Zhuang, Z., Ramachandra, H., & Xiong, C. (2015). Taming replication latency of big data events with capacity planning. Computer,48, 36–41.CrossRef
3.
Zurück zum Zitat Mao, M., Yue, Y., & Chang, L. (2016). Multi-time scale forecast for schedulable capacity of Electric Vehicle fleets using big data analysis. In 2016 IEEE 7th international symposium on power electronics for distributed generation systems (PEDG) (pp. 1–7). Mao, M., Yue, Y., & Chang, L. (2016). Multi-time scale forecast for schedulable capacity of Electric Vehicle fleets using big data analysis. In 2016 IEEE 7th international symposium on power electronics for distributed generation systems (PEDG) (pp. 1–7).
4.
Zurück zum Zitat Mao, M., Wang, Y., Yue, Y., & Chang, L. (2017). Multi-time scale forecast for schedulable capacity of EVs based on big data and machine learning. In 2017 IEEE, Energy conversion congress and exposition (ECCE) (pp. 1425–1431). Mao, M., Wang, Y., Yue, Y., & Chang, L. (2017). Multi-time scale forecast for schedulable capacity of EVs based on big data and machine learning. In 2017 IEEE, Energy conversion congress and exposition (ECCE) (pp. 1425–1431).
5.
Zurück zum Zitat Atabaki, A. H., Moazenni, S., Pavanello, F., et al. (2018). Integrating photonics with silicon nanoelectronics for next generation of system on a chip. Nature,556, 349–354.CrossRef Atabaki, A. H., Moazenni, S., Pavanello, F., et al. (2018). Integrating photonics with silicon nanoelectronics for next generation of system on a chip. Nature,556, 349–354.CrossRef
6.
Zurück zum Zitat Bahadoran, M., & Yupapin, P. (2018). All-optical notch filters for ultra-wideband chaotic communications. European Journal of Physics Plus, 133, 487.CrossRef Bahadoran, M., & Yupapin, P. (2018). All-optical notch filters for ultra-wideband chaotic communications. European Journal of Physics Plus, 133, 487.CrossRef
7.
Zurück zum Zitat Wang, H., Chen, Z., Zhao, J., Di, X., & Liu, D. (2018). A vulnerability assessment method in industrial internet of things based on attack graph and maximum flow. IEEE ACCESS,6, 8599–8609.CrossRef Wang, H., Chen, Z., Zhao, J., Di, X., & Liu, D. (2018). A vulnerability assessment method in industrial internet of things based on attack graph and maximum flow. IEEE ACCESS,6, 8599–8609.CrossRef
8.
Zurück zum Zitat Liu, Z., Choo, K.-K. R., & Grossschadl, J. (2018). Securing edge devices in the post-quantum internet of things using lattice-based cryptography. IEEE Communications Magazine,56, 158–162.CrossRef Liu, Z., Choo, K.-K. R., & Grossschadl, J. (2018). Securing edge devices in the post-quantum internet of things using lattice-based cryptography. IEEE Communications Magazine,56, 158–162.CrossRef
9.
Zurück zum Zitat Zhao, L., & Dong, X. (2018). An industrial internet of things feature selection method based on potential entropy evaluation criteria. IEEE Access,6, 4608–4617.CrossRef Zhao, L., & Dong, X. (2018). An industrial internet of things feature selection method based on potential entropy evaluation criteria. IEEE Access,6, 4608–4617.CrossRef
10.
Zurück zum Zitat Mumtaz, S., Bo, A., Al-Dulaimi, A., & Tsang, K.-F. (2018). 5G and beyond mobile technologies and applications for industrial IoT (IIoT). IEEE Transactions on Industrial Informatics,14(6), 2588–2591.CrossRef Mumtaz, S., Bo, A., Al-Dulaimi, A., & Tsang, K.-F. (2018). 5G and beyond mobile technologies and applications for industrial IoT (IIoT). IEEE Transactions on Industrial Informatics,14(6), 2588–2591.CrossRef
11.
Zurück zum Zitat Cai, Y., Chen, X., Yu, J., & Zhou, J. (2018). Numerical study on the evolution of mesoscopic properties and permeability in sandstone under hydromechanical coupling conditions involving industrial internet of things. IEEE Access,6, 11804–11815.CrossRef Cai, Y., Chen, X., Yu, J., & Zhou, J. (2018). Numerical study on the evolution of mesoscopic properties and permeability in sandstone under hydromechanical coupling conditions involving industrial internet of things. IEEE Access,6, 11804–11815.CrossRef
12.
Zurück zum Zitat AlKalaa, M. O., Balid, W., Refai, H. H., LaSorte, N. J., Seidman, S. J., Bassen, H. I., et al. (2017). Characterizing the 2.4 GHz spectrum in a hospital environment: Modeling and applicability to coexistence testing of medical devices. IEEE Transactions on Electromagnetic Compatibility,59, 58–66.CrossRef AlKalaa, M. O., Balid, W., Refai, H. H., LaSorte, N. J., Seidman, S. J., Bassen, H. I., et al. (2017). Characterizing the 2.4 GHz spectrum in a hospital environment: Modeling and applicability to coexistence testing of medical devices. IEEE Transactions on Electromagnetic Compatibility,59, 58–66.CrossRef
13.
Zurück zum Zitat Tang, C.-K., Chan, K.-H., Fung, L.-C., & Leung, S.-W. (2009). Electromagnetic interference immunity testing of medical equipment to second-and third-generation mobile phones. IEEE Transactions on Electromagnetic Compatibility,51, 659–664.CrossRef Tang, C.-K., Chan, K.-H., Fung, L.-C., & Leung, S.-W. (2009). Electromagnetic interference immunity testing of medical equipment to second-and third-generation mobile phones. IEEE Transactions on Electromagnetic Compatibility,51, 659–664.CrossRef
14.
Zurück zum Zitat Wan, F., Duval, F., Savatier, X., Louis, A., & Mazari, B. (2012). Electromagnetic interference detection method to increase the immunity of a microcontroller-based system in a complex electromagnetic environment. IET Science, Measurement and Technology,6, 254–260.CrossRef Wan, F., Duval, F., Savatier, X., Louis, A., & Mazari, B. (2012). Electromagnetic interference detection method to increase the immunity of a microcontroller-based system in a complex electromagnetic environment. IET Science, Measurement and Technology,6, 254–260.CrossRef
15.
Zurück zum Zitat Li, H. G., Bai, H. X., Xie, S. G., & Su, D. L. (2015). Bulk-driven CMOS amplifier with high EMI immunity. IEEE Transactions on Electromagnetic Compatibility,57, 1425–1434.CrossRef Li, H. G., Bai, H. X., Xie, S. G., & Su, D. L. (2015). Bulk-driven CMOS amplifier with high EMI immunity. IEEE Transactions on Electromagnetic Compatibility,57, 1425–1434.CrossRef
16.
Zurück zum Zitat Richelli, A., Colalongo, L., Quarantelli, M., & Kovács-Vajna, Z. M. (2004). Robust design of low EMI susceptibility CMOS OpAmp. IEEE Transactions on Electromagnetic Compatibility,46, 291–298.CrossRef Richelli, A., Colalongo, L., Quarantelli, M., & Kovács-Vajna, Z. M. (2004). Robust design of low EMI susceptibility CMOS OpAmp. IEEE Transactions on Electromagnetic Compatibility,46, 291–298.CrossRef
17.
Zurück zum Zitat Redouté, J.-M., & Baghini, M. S. (2018). A generic EMI-immune technique for differential amplifiers with single-ended output. IEEE Transactions on Electromagnetic Compatibility,60, 958–964.CrossRef Redouté, J.-M., & Baghini, M. S. (2018). A generic EMI-immune technique for differential amplifiers with single-ended output. IEEE Transactions on Electromagnetic Compatibility,60, 958–964.CrossRef
18.
Zurück zum Zitat Soysouvanh, S., Jalil, M., Amiri, I., Ali, J., Singh, G., Mitatha, S., et al. (2018). Ultra-fast electro-optic switching control using a soliton pulse within a modified add-drop multiplexer. Microsystem Technologies,24(9), 3777–3782.CrossRef Soysouvanh, S., Jalil, M., Amiri, I., Ali, J., Singh, G., Mitatha, S., et al. (2018). Ultra-fast electro-optic switching control using a soliton pulse within a modified add-drop multiplexer. Microsystem Technologies,24(9), 3777–3782.CrossRef
19.
Zurück zum Zitat Haas, H., Yin, L., Wang, Y., & Chen, C. (2016). What is lifi? Journal of Lightwave Technology,34, 1533–1544.CrossRef Haas, H., Yin, L., Wang, Y., & Chen, C. (2016). What is lifi? Journal of Lightwave Technology,34, 1533–1544.CrossRef
20.
Zurück zum Zitat Sarkar, A., Agarwal, S., & Nath, A. (2015). Li–Fi technology: Data transmission through visible light. International Journal of Advance Research in Computer Science and Management Studies, 3(6), 1–10. Sarkar, A., Agarwal, S., & Nath, A. (2015). Li–Fi technology: Data transmission through visible light. International Journal of Advance Research in Computer Science and Management Studies, 3(6), 1–10.
21.
Zurück zum Zitat Yadav, M. S., Mishra, M. P., Velapure, M. M., & Togrikar, P. (2016). LI–FI technology for data transmission through LED. Imperial Journal ofInterdisciplinary Research, 2(6), 21–24. Yadav, M. S., Mishra, M. P., Velapure, M. M., & Togrikar, P. (2016). LI–FI technology for data transmission through LED. Imperial Journal ofInterdisciplinary Research, 2(6), 21–24.
22.
Zurück zum Zitat Sharma, S., & Bansal, N. (2016). Li-Fi (Light fidelity)-the future technology in wireless communication. International Journal of Advanced Research in Computer Science, 7(6), 258–262. Sharma, S., & Bansal, N. (2016). Li-Fi (Light fidelity)-the future technology in wireless communication. International Journal of Advanced Research in Computer Science, 7(6), 258–262.
24.
Zurück zum Zitat Punthawanunt, S., Aziz, M. S., Phatharacorn, P., Chiangga, S., Ali, J., & Yupapin, P. (2018). LiFi cross-connection node model using whispering gallery mode of light in a microring Resonator. Microsystem Technologies,24(12), 4833–4838.CrossRef Punthawanunt, S., Aziz, M. S., Phatharacorn, P., Chiangga, S., Ali, J., & Yupapin, P. (2018). LiFi cross-connection node model using whispering gallery mode of light in a microring Resonator. Microsystem Technologies,24(12), 4833–4838.CrossRef
25.
Zurück zum Zitat Sarapat, N., Pornsuwancharoen, N., Youplao, P., Amiri, I. S., Jalil, M. A., Ali, J., et al. (2018). LiFi up-downlink conversion node model generated by inline successive optical pumping. Microsystem Technologies,5, 945–950. Sarapat, N., Pornsuwancharoen, N., Youplao, P., Amiri, I. S., Jalil, M. A., Ali, J., et al. (2018). LiFi up-downlink conversion node model generated by inline successive optical pumping. Microsystem Technologies,5, 945–950.
26.
Zurück zum Zitat Smektala, F., Quemard, C., Leneindre, L., Lucas, J., Barthélémy, A., & De Angelis, C. (1998). Chalcogenide glasses with large non-linear refractive indices. Journal of Non-Crystalline Solids,239, 139–142.CrossRef Smektala, F., Quemard, C., Leneindre, L., Lucas, J., Barthélémy, A., & De Angelis, C. (1998). Chalcogenide glasses with large non-linear refractive indices. Journal of Non-Crystalline Solids,239, 139–142.CrossRef
27.
Zurück zum Zitat Zakery, A., & Elliott, S. R. (2007). Optical nonlinearities in chalcogenide glasses and their applications (Vol. 135). Berlin: Springer. Zakery, A., & Elliott, S. R. (2007). Optical nonlinearities in chalcogenide glasses and their applications (Vol. 135). Berlin: Springer.
28.
Zurück zum Zitat Pornsuwancharoen, N., Youplao, P., Amiri, I., Ali, J., & Yupapin, P. (2017). Electron driven mobility model by light on the stacked metal–dielectric interfaces. Microwave and Optical Technology Letters,59, 1704–1709.CrossRef Pornsuwancharoen, N., Youplao, P., Amiri, I., Ali, J., & Yupapin, P. (2017). Electron driven mobility model by light on the stacked metal–dielectric interfaces. Microwave and Optical Technology Letters,59, 1704–1709.CrossRef
29.
Zurück zum Zitat Pornsuwancharoen, N., Amiri, I. S., Suhailin, F., Aziz, M., Ali, J., Singh, G., et al. (2017). Micro-current source generated by a WGM of light within a stacked silicon–graphene–Au waveguide. IEEE Photonics Technology Letters,29, 1768–1771.CrossRef Pornsuwancharoen, N., Amiri, I. S., Suhailin, F., Aziz, M., Ali, J., Singh, G., et al. (2017). Micro-current source generated by a WGM of light within a stacked silicon–graphene–Au waveguide. IEEE Photonics Technology Letters,29, 1768–1771.CrossRef
30.
Zurück zum Zitat Mitkova, M., & Boncheva-Mladenova, Z. (1987). Selective solubility of some silver-chalcogenide glasses. Journal of Non-Crystalline Solids,90, 589–592.CrossRef Mitkova, M., & Boncheva-Mladenova, Z. (1987). Selective solubility of some silver-chalcogenide glasses. Journal of Non-Crystalline Solids,90, 589–592.CrossRef
31.
Zurück zum Zitat Roscoe, A. J. & Blair, S. M. (2016). Choice and properties of adaptive and tunable digital boxcar (moving average) filters for power systems and other signal processing applications. In 2016 IEEE international workshop on, applied measurements for power systems (AMPS) (pp. 1–6). Roscoe, A. J. & Blair, S. M. (2016). Choice and properties of adaptive and tunable digital boxcar (moving average) filters for power systems and other signal processing applications. In 2016 IEEE international workshop on, applied measurements for power systems (AMPS) (pp. 1–6).
32.
Zurück zum Zitat Gall, D. (2016). Electron mean free path in elemental metals. Journal of Applied Physics,119, 085101.CrossRef Gall, D. (2016). Electron mean free path in elemental metals. Journal of Applied Physics,119, 085101.CrossRef
33.
Zurück zum Zitat Baccarani, G., & Ostoja, P. (1975). Electron mobility empirically related to the phosphorus concentration in silicon. Solid-State Electronics,18, 579–580.CrossRef Baccarani, G., & Ostoja, P. (1975). Electron mobility empirically related to the phosphorus concentration in silicon. Solid-State Electronics,18, 579–580.CrossRef
34.
Zurück zum Zitat Chaiwong, K., Tamee, K., Punthawanunt, S., Suhailin, F., Aziz, M., Ali, J., et al. (2018). Naked-eye 3D imaging model using the embedded micro-conjugate mirrors within the medical micro-needle device. Microsystem Technologies,24(6), 2695–2699.CrossRef Chaiwong, K., Tamee, K., Punthawanunt, S., Suhailin, F., Aziz, M., Ali, J., et al. (2018). Naked-eye 3D imaging model using the embedded micro-conjugate mirrors within the medical micro-needle device. Microsystem Technologies,24(6), 2695–2699.CrossRef
35.
Zurück zum Zitat Bahadoran, M., Ali, J., & Yupapin, P. P. (2013). Ultrafast all-optical switching using signal flow graph for PANDA resonator. Applied Optics,52, 2866–2873.CrossRef Bahadoran, M., Ali, J., & Yupapin, P. P. (2013). Ultrafast all-optical switching using signal flow graph for PANDA resonator. Applied Optics,52, 2866–2873.CrossRef
36.
Zurück zum Zitat Karim, M., Rahman, B., & Agrawal, G. P. (2015). Mid-infrared supercontinuum generation using dispersion-engineered Ge 11.5 As 24 Se 64.5 chalcogenide channel waveguide. Optics Express,23, 6903–6914.CrossRef Karim, M., Rahman, B., & Agrawal, G. P. (2015). Mid-infrared supercontinuum generation using dispersion-engineered Ge 11.5 As 24 Se 64.5 chalcogenide channel waveguide. Optics Express,23, 6903–6914.CrossRef
37.
Zurück zum Zitat Asobe, M., Suzuki, K. I., Kanamori, T., & Kubodera, K. I. (1992). Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation. Applied Physics Letters,60, 1153–1154.CrossRef Asobe, M., Suzuki, K. I., Kanamori, T., & Kubodera, K. I. (1992). Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation. Applied Physics Letters,60, 1153–1154.CrossRef
38.
Zurück zum Zitat Sud, S., Want, R., Pering, T., Rosario, B., & Lyons, K. (2008). Enabling rapid wireless system composition through layer-2 discovery. IEEE Network,22(4), 14–20.CrossRef Sud, S., Want, R., Pering, T., Rosario, B., & Lyons, K. (2008). Enabling rapid wireless system composition through layer-2 discovery. IEEE Network,22(4), 14–20.CrossRef
39.
Zurück zum Zitat Chen, H.-C. (2017). TCABRP: A trust-based cooperation authentication bit-map routing protocol against insider security threats in wireless ad hoc networks. IEEE Systems Journal,11, 449–459.CrossRef Chen, H.-C. (2017). TCABRP: A trust-based cooperation authentication bit-map routing protocol against insider security threats in wireless ad hoc networks. IEEE Systems Journal,11, 449–459.CrossRef
40.
Zurück zum Zitat Chaiyasoonthorn, S., Limpaibool, P., Mitatha, S., & Yupapin, P. P. (2010). High capacity mobile ad hoc network using THz frequency enhancement. International Journal of Communications, Network and System Sciences,3, 954.CrossRef Chaiyasoonthorn, S., Limpaibool, P., Mitatha, S., & Yupapin, P. P. (2010). High capacity mobile ad hoc network using THz frequency enhancement. International Journal of Communications, Network and System Sciences,3, 954.CrossRef
41.
Zurück zum Zitat Derkachova, A., & Kolwas, K. (2007). Size dependence of multipolar plasmon resonance frequencies and damping rates in simple metal spherical nanoparticles. The European Physical Journal Special Topics,144, 93–99.CrossRef Derkachova, A., & Kolwas, K. (2007). Size dependence of multipolar plasmon resonance frequencies and damping rates in simple metal spherical nanoparticles. The European Physical Journal Special Topics,144, 93–99.CrossRef
42.
Zurück zum Zitat Tunsiri, S., et al. (2019). Microring switching control using plasmonic ring resonator circuits for super-channel use. Plasmonics,14, 1669–1677.CrossRef Tunsiri, S., et al. (2019). Microring switching control using plasmonic ring resonator circuits for super-channel use. Plasmonics,14, 1669–1677.CrossRef
43.
Zurück zum Zitat Ali, J., Youplao, P., Pornsuwancharoen, N., Jalil, M. A., Aziz, M. S., Amiri, I. S., et al. (2018). On-chip electro-optic multiplexing circuit using serial microring boxcar filters. Results in Physics,10, 18–21.CrossRef Ali, J., Youplao, P., Pornsuwancharoen, N., Jalil, M. A., Aziz, M. S., Amiri, I. S., et al. (2018). On-chip electro-optic multiplexing circuit using serial microring boxcar filters. Results in Physics,10, 18–21.CrossRef
Metadaten
Titel
High-Density Wavelength Multiplexing Model for THz-EMI Transmission
verfasst von
M. Bunruangses
K. Chaiwong
I. S. Amiri
P. Youplao
N. Pornsuwancharoen
P. Yupapin
Publikationsdatum
07.04.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07276-4

Weitere Artikel der Ausgabe 2/2020

Wireless Personal Communications 2/2020 Zur Ausgabe

Neuer Inhalt