Skip to main content

2018 | OriginalPaper | Buchkapitel

3. High-Efficiency Solar Cells

verfasst von : Harry Apostoleris, Marco Stefancich, Matteo Chiesa

Erschienen in: Concentrating Photovoltaics (CPV): The Path Ahead

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One idea that we will return to throughout this book is that CPV, as configured today, is an “overconstrained” system from an engineering standpoint. Too many design elements and environmental factors must be controlled too precisely to make a system that is simple and cheap enough to compete economically.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Woodhouse, M., & Goodrich, A. (2014). Manufacturing cost analysis relevant to single-and dual-junction photovoltaic cells fabricated with III–Vs and III–Vs grown on Czochralski silicon (presentation). CO: National Renewable Energy Laboratory (NREL), Golden. Woodhouse, M., & Goodrich, A. (2014). Manufacturing cost analysis relevant to single-and dual-junction photovoltaic cells fabricated with III–Vs and III–Vs grown on Czochralski silicon (presentation). CO: National Renewable Energy Laboratory (NREL), Golden.
2.
Zurück zum Zitat Bett, A., Dimroth, F., Stollwerck, G., & Sulima, O. (1999). III–V compounds for solar cell applications. Applied Physics A, 69, 119–129.CrossRef Bett, A., Dimroth, F., Stollwerck, G., & Sulima, O. (1999). III–V compounds for solar cell applications. Applied Physics A, 69, 119–129.CrossRef
3.
Zurück zum Zitat Kayes, B. M., et al. (2011). Photovoltaic Specialists Conference (PVSC), 37th IEEE (pp. 000004–000008). Piscataway: IEEE. Kayes, B. M., et al. (2011). Photovoltaic Specialists Conference (PVSC), 37th IEEE (pp. 000004–000008). Piscataway: IEEE.
4.
Zurück zum Zitat Yablonovitch, E., & Gmitter, T. (1986). Auger recombination in silicon at low carrier densities. Applied Physics Letters, 49, 587–589.CrossRef Yablonovitch, E., & Gmitter, T. (1986). Auger recombination in silicon at low carrier densities. Applied Physics Letters, 49, 587–589.CrossRef
5.
Zurück zum Zitat Yablonovitch, E., Miller, O. D., & Kurtz, S. R. (2012). In Photovoltaic Specialists Conference (PVSC), 38th IEEE (pp. 001556–001559). IEEE: Piscataway. Yablonovitch, E., Miller, O. D., & Kurtz, S. R. (2012). In Photovoltaic Specialists Conference (PVSC), 38th IEEE (pp. 001556–001559). IEEE: Piscataway.
6.
Zurück zum Zitat Shockley, W., & Queisser, H. J. (1961). Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 32, 510–519.CrossRef Shockley, W., & Queisser, H. J. (1961). Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 32, 510–519.CrossRef
7.
Zurück zum Zitat Hirst, L. C., & Ekins-Daukes, N. J. (2011). Fundamental losses in solar cells. Progress in Photovoltaics: Research and Applications, 19, 286–293.CrossRef Hirst, L. C., & Ekins-Daukes, N. J. (2011). Fundamental losses in solar cells. Progress in Photovoltaics: Research and Applications, 19, 286–293.CrossRef
8.
Zurück zum Zitat Cotal, H., et al. (2009). III–V multijunction solar cells for concentrating photovoltaics. Energy & Environmental Science, 2, 174–192.CrossRef Cotal, H., et al. (2009). III–V multijunction solar cells for concentrating photovoltaics. Energy & Environmental Science, 2, 174–192.CrossRef
9.
Zurück zum Zitat Dimroth, F., et al. (2014). Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency. Progress in Photovoltaics: Research and Applications, 22, 277–282.CrossRef Dimroth, F., et al. (2014). Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency. Progress in Photovoltaics: Research and Applications, 22, 277–282.CrossRef
10.
Zurück zum Zitat Vurgaftman, I., Meyer, J., & Ram-Mohan, L. (2001). Band parameters for III–V compound semiconductors and their alloys. Journal of Applied Physics, 89, 5815–5875.CrossRef Vurgaftman, I., Meyer, J., & Ram-Mohan, L. (2001). Band parameters for III–V compound semiconductors and their alloys. Journal of Applied Physics, 89, 5815–5875.CrossRef
11.
Zurück zum Zitat King, R., et al. (2012). Solar cell generations over 40% efficiency. Progress in Photovoltaics: Research and Applications, 20, 801–815.CrossRef King, R., et al. (2012). Solar cell generations over 40% efficiency. Progress in Photovoltaics: Research and Applications, 20, 801–815.CrossRef
13.
Zurück zum Zitat Zahler, J. M. et al. NCPV and Solar Program Review Meeting. Zahler, J. M. et al. NCPV and Solar Program Review Meeting.
14.
Zurück zum Zitat Derendorf, K., et al. (2013). Fabrication of GaInP/GaAs//Si solar cells by surface activated direct wafer bonding. IEEE Journal of Photovoltaics, 3, 1423–1428.CrossRef Derendorf, K., et al. (2013). Fabrication of GaInP/GaAs//Si solar cells by surface activated direct wafer bonding. IEEE Journal of Photovoltaics, 3, 1423–1428.CrossRef
15.
Zurück zum Zitat Gee, J. M., & Virshup, G. F. (1988). Photovoltaic Specialists Conference, Conference Record of the Twentieth IEEE (pp. 754–758). Piscataway: IEEE.CrossRef Gee, J. M., & Virshup, G. F. (1988). Photovoltaic Specialists Conference, Conference Record of the Twentieth IEEE (pp. 754–758). Piscataway: IEEE.CrossRef
16.
Zurück zum Zitat Antypas, G. A., Bell, R. L., & Moon, R. L. (1982). Google Patents. Antypas, G. A., Bell, R. L., & Moon, R. L. (1982). Google Patents.
17.
Zurück zum Zitat Lee, K.-H., et al. (2016). In Photovoltaic Specialists Conference (PVSC), IEEE 43rd (1957–1959). Piscataway: IEEE. Lee, K.-H., et al. (2016). In Photovoltaic Specialists Conference (PVSC), IEEE 43rd (1957–1959). Piscataway: IEEE.
18.
Zurück zum Zitat Essig, S. et al. Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency. IEEE Journal of Photovoltaics, 6, 1012–1019 (2016). Essig, S. et al. Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency. IEEE Journal of Photovoltaics, 6, 1012–1019 (2016).
19.
Zurück zum Zitat Essig, S., et al. (2016). In Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd. (2040–2042). Piscataway: IEEE. Essig, S., et al. (2016). In Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd. (2040–2042). Piscataway: IEEE.
20.
Zurück zum Zitat Vos, A. D. (1980). Detailed balance limit of the efficiency of tandem solar cells. Journal of Physics. D. Applied Physics, 13, 839.CrossRef Vos, A. D. (1980). Detailed balance limit of the efficiency of tandem solar cells. Journal of Physics. D. Applied Physics, 13, 839.CrossRef
21.
Zurück zum Zitat Essig, S., et al. (2015). Progress towards a 30% efficient GaInP/Si tandem solar cell. Energy Procedia, 77, 464–469.CrossRef Essig, S., et al. (2015). Progress towards a 30% efficient GaInP/Si tandem solar cell. Energy Procedia, 77, 464–469.CrossRef
22.
Zurück zum Zitat Mojiri, A., Taylor, R., Thomsen, E., & Rosengarten, G. (2013). Spectral beam splitting for efficient conversion of solar energy—A review. Renewable and Sustainable Energy Reviews, 28, 654–663.CrossRef Mojiri, A., Taylor, R., Thomsen, E., & Rosengarten, G. (2013). Spectral beam splitting for efficient conversion of solar energy—A review. Renewable and Sustainable Energy Reviews, 28, 654–663.CrossRef
23.
Zurück zum Zitat Imenes, A., & Mills, D. (2004). Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review. Solar Energy Materials and Solar Cells, 84, 19–69.CrossRef Imenes, A., & Mills, D. (2004). Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review. Solar Energy Materials and Solar Cells, 84, 19–69.CrossRef
24.
Zurück zum Zitat Kosten, E. D., Warmann, E. C., Lloyd, J., & Atwater, H. A. SPIE Solar Energy+Technology. 882109-882109-882103 International Society for Optics and Photonics. Kosten, E. D., Warmann, E. C., Lloyd, J., & Atwater, H. A. SPIE Solar Energy+Technology. 882109-882109-882103 International Society for Optics and Photonics.
25.
Zurück zum Zitat Keevers, M. J. et al. High Efficiency Spectrum Splitting Prototype Submodule Using Commercial CPV Cells. (2015). Keevers, M. J. et al. High Efficiency Spectrum Splitting Prototype Submodule Using Commercial CPV Cells. (2015).
26.
Zurück zum Zitat Stefancich, M., et al. (2012). Single element spectral splitting solar concentrator for multiple cells CPV system. Optics Express, 20, 9004–9018.CrossRef Stefancich, M., et al. (2012). Single element spectral splitting solar concentrator for multiple cells CPV system. Optics Express, 20, 9004–9018.CrossRef
27.
Zurück zum Zitat Caselli, D., & Ning, C.-Z. (2015). Monolithically-integrated laterally-arrayed multiple bandgap solar cells for spectrum-splitting photovoltaic systems. Progress in Quantum Electronics, 39, 24–70.CrossRef Caselli, D., & Ning, C.-Z. (2015). Monolithically-integrated laterally-arrayed multiple bandgap solar cells for spectrum-splitting photovoltaic systems. Progress in Quantum Electronics, 39, 24–70.CrossRef
28.
Zurück zum Zitat Rampino, S., Bissoli, F., Gilioli, E., & Pattini, F. (2013). Growth of Cu (In, Ga) Se2 thin films by a novel single-stage route based on pulsed electron deposition. Progress in Photovoltaics: Research and Applications, 21, 588–594. Rampino, S., Bissoli, F., Gilioli, E., & Pattini, F. (2013). Growth of Cu (In, Ga) Se2 thin films by a novel single-stage route based on pulsed electron deposition. Progress in Photovoltaics: Research and Applications, 21, 588–594.
29.
Zurück zum Zitat Gabor, A. M., et al. (1996). Band-gap engineering in Cu (In, Ga) Se2 thin films grown from (In, Ga) 2Se3 precursors. Solar Energy Materials and Solar Cells, 41, 247–260.CrossRef Gabor, A. M., et al. (1996). Band-gap engineering in Cu (In, Ga) Se2 thin films grown from (In, Ga) 2Se3 precursors. Solar Energy Materials and Solar Cells, 41, 247–260.CrossRef
30.
Zurück zum Zitat NREL Photovoltaic Efficiency Chart. (2016). NREL Photovoltaic Efficiency Chart. (2016).
31.
32.
Zurück zum Zitat Kayes, B. M., Zhang, L., Twist, R., Ding, I.-K., & Higashi, G. S. (2014). Flexible thin-film tandem solar cells with > 30% efficiency. IEEE Journal of Photovoltaics, 4, 729–733.CrossRef Kayes, B. M., Zhang, L., Twist, R., Ding, I.-K., & Higashi, G. S. (2014). Flexible thin-film tandem solar cells with > 30% efficiency. IEEE Journal of Photovoltaics, 4, 729–733.CrossRef
33.
Zurück zum Zitat Marti, A., & Araújo, G. L. (1996). Limiting efficiencies for photovoltaic energy conversion in multigap systems. Solar Energy Materials and Solar Cells, 43, 203–222.CrossRef Marti, A., & Araújo, G. L. (1996). Limiting efficiencies for photovoltaic energy conversion in multigap systems. Solar Energy Materials and Solar Cells, 43, 203–222.CrossRef
35.
Zurück zum Zitat Bobela, D. C., Gedvilas, L., Woodhouse, M., Horowitz, K. A., & Basore, P. A. (2017). Economic competitiveness of III–V on silicon tandem one-sun photovoltaic solar modules in favorable future scenarios. Progress in Photovoltaics: Research and Applications, 25, 41–48.CrossRef Bobela, D. C., Gedvilas, L., Woodhouse, M., Horowitz, K. A., & Basore, P. A. (2017). Economic competitiveness of III–V on silicon tandem one-sun photovoltaic solar modules in favorable future scenarios. Progress in Photovoltaics: Research and Applications, 25, 41–48.CrossRef
36.
Zurück zum Zitat Trube, J., Fischer, M., & Metz, A. (2016). Wiley-V Ch Verlag Gmbh Postfach. 101161, 69451 Weinheim: Germany. Trube, J., Fischer, M., & Metz, A. (2016). Wiley-V Ch Verlag Gmbh Postfach. 101161, 69451 Weinheim: Germany.
37.
Zurück zum Zitat Peters, I., Sofia, S., Mailoa, J., & Buonassisi, T. (2016). Techno-economic analysis of tandem photovoltaic systems. RSC Advances, 6, 66911–66923.CrossRef Peters, I., Sofia, S., Mailoa, J., & Buonassisi, T. (2016). Techno-economic analysis of tandem photovoltaic systems. RSC Advances, 6, 66911–66923.CrossRef
38.
Zurück zum Zitat Horowitz, K., Woodhouse, M., Lee, H., & Smestad, G. (2015). Bottom-Up Cost Analysis of a High Concentration PV Module; NREL (National Renewable Energy Laboratory). (NREL (National Renewable Energy Laboratory (NREL), Golden: CO (United States). Horowitz, K., Woodhouse, M., Lee, H., & Smestad, G. (2015). Bottom-Up Cost Analysis of a High Concentration PV Module; NREL (National Renewable Energy Laboratory). (NREL (National Renewable Energy Laboratory (NREL), Golden: CO (United States).
39.
Zurück zum Zitat Ward, J. S. (2016). Techno-economic analysis of three different substrate removal and reuse strategies for III–V solar cells. Progress in Photovoltaics: Research and Applications, 24, 1284–1292.CrossRef Ward, J. S. (2016). Techno-economic analysis of three different substrate removal and reuse strategies for III–V solar cells. Progress in Photovoltaics: Research and Applications, 24, 1284–1292.CrossRef
40.
Zurück zum Zitat Lee, K., Zimmerman, J. D., Hughes, T. W., & Forrest, S. R. (2014). Non-Destructive Wafer Recycling for Low-Cost Thin-Film Flexible Optoelectronics. Advanced Functional Materials, 24, 4284–4291.CrossRef Lee, K., Zimmerman, J. D., Hughes, T. W., & Forrest, S. R. (2014). Non-Destructive Wafer Recycling for Low-Cost Thin-Film Flexible Optoelectronics. Advanced Functional Materials, 24, 4284–4291.CrossRef
41.
Zurück zum Zitat Kim, Y., et al. (2017). Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature, 544, 340–343.CrossRef Kim, Y., et al. (2017). Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature, 544, 340–343.CrossRef
42.
Zurück zum Zitat Zheng, M., et al. (2016). III–Vs at scale: a PV manufacturing cost analysis of the thin film vapor–liquid–solid growth mode. Progress in Photovoltaics: Research and Applications. Zheng, M., et al. (2016). III–Vs at scale: a PV manufacturing cost analysis of the thin film vapor–liquid–solid growth mode. Progress in Photovoltaics: Research and Applications.
45.
Zurück zum Zitat Hwang, K., et al. (2015). Toward large scale roll-to-roll production of fully printed perovskite solar cells. Advanced Materials, 27, 1241–1247.CrossRef Hwang, K., et al. (2015). Toward large scale roll-to-roll production of fully printed perovskite solar cells. Advanced Materials, 27, 1241–1247.CrossRef
46.
Zurück zum Zitat Wang, D., Wright, M., Elumalai, N. K., & Uddin, A. (2016). Stability of perovskite solar cells. Solar Energy Materials and Solar Cells, 147, 255–275.CrossRef Wang, D., Wright, M., Elumalai, N. K., & Uddin, A. (2016). Stability of perovskite solar cells. Solar Energy Materials and Solar Cells, 147, 255–275.CrossRef
Metadaten
Titel
High-Efficiency Solar Cells
verfasst von
Harry Apostoleris
Marco Stefancich
Matteo Chiesa
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-62980-3_3