Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 12/2015

08.05.2015

High electric field conduction in low-alkali boroaluminosilicate glass

verfasst von: Doo Hyun Choi, Clive Randall, Eugene Furman, Michael Lanagan

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 12/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is important to understand electronic and ionic transport in low-alkali boroaluminosilicate glass, which is a promising dielectric for high energy density capacitors. Electric field, thickness, and temperature dependence of the leakage currents for low-alkali boroaluminosilicate (Schott AF 45) were all investigated to elucidate potential conduction mechanisms under high electric field. The bulk conductivity ranged from 10−16 S/m at room temperature to 10−12 S/m at 200 °C. It was also found that conduction significantly increased with electric field and that a single conduction mechanism does not adequately describe leakage current data over wide electric field and temperature ranges. From the systematic analysis applied here we conclude that the conduction was governed by a combination of multiple conduction mechanisms. It is suggested that ion hopping conduction by the sodium ion migration dominated the conduction at the initial stage followed by space-charge-limited conduction from sodium ion depleted regions where electric field is enhanced.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N.J. Smith, B. Rangarajan, M.T. Lanagan, C.G. Pantano, Alkali-free glass as a high energy density dielectric material. Mater. Lett. 63(15), 1245–1248 (2009)CrossRef N.J. Smith, B. Rangarajan, M.T. Lanagan, C.G. Pantano, Alkali-free glass as a high energy density dielectric material. Mater. Lett. 63(15), 1245–1248 (2009)CrossRef
2.
Zurück zum Zitat H. Lee, N.J. Smith, C.G. Pantano, E. Furman, M.T. Lanagan, Dielectric breakdown of thinned BaO–Al2O3–B2O3–SiO2 Glass. J. Am. Ceram. Soc. 93(8), 2346–2351 (2010)CrossRef H. Lee, N.J. Smith, C.G. Pantano, E. Furman, M.T. Lanagan, Dielectric breakdown of thinned BaO–Al2O3–B2O3–SiO2 Glass. J. Am. Ceram. Soc. 93(8), 2346–2351 (2010)CrossRef
3.
Zurück zum Zitat T. Murata, P. Dash, E. Furman, C. Pantano, M. Lanagan, Electrode-limited dielectric breakdown of alkali free glass. J. Am. Ceram. Soc. 95(6), 1915–1919 (2012)CrossRef T. Murata, P. Dash, E. Furman, C. Pantano, M. Lanagan, Electrode-limited dielectric breakdown of alkali free glass. J. Am. Ceram. Soc. 95(6), 1915–1919 (2012)CrossRef
4.
Zurück zum Zitat P. Dash, E. Furman, C.G. Pantano, M.T. Lanagan, Activation energy for alkaline–earth ion transport in low alkali aluminoborosilicate glasses. Appl. Phys. Lett. 102, 082904 (2013)CrossRef P. Dash, E. Furman, C.G. Pantano, M.T. Lanagan, Activation energy for alkaline–earth ion transport in low alkali aluminoborosilicate glasses. Appl. Phys. Lett. 102, 082904 (2013)CrossRef
5.
Zurück zum Zitat A. Many, S. Weisz, M. Simhony, Space-charge-limited currents in iodine single crystals. Phys. Rev. 126(6), 1989 (1962)CrossRef A. Many, S. Weisz, M. Simhony, Space-charge-limited currents in iodine single crystals. Phys. Rev. 126(6), 1989 (1962)CrossRef
6.
Zurück zum Zitat M.A. Lampert, Volume-controlled current injection in insulators. Rep. Prog. Phys. 27, 329 (1964)CrossRef M.A. Lampert, Volume-controlled current injection in insulators. Rep. Prog. Phys. 27, 329 (1964)CrossRef
7.
Zurück zum Zitat T. Hartman, J. Blair, R. Bauer, Electrical conduction through SiO films. J. Appl. Phys. 37(6), 2468–2474 (1966)CrossRef T. Hartman, J. Blair, R. Bauer, Electrical conduction through SiO films. J. Appl. Phys. 37(6), 2468–2474 (1966)CrossRef
8.
Zurück zum Zitat A. Servini, A. Jonscher, Electrical conduction in evaporated silicon oxide films. Thin Solid Films 3(5), 341–365 (1969)CrossRef A. Servini, A. Jonscher, Electrical conduction in evaporated silicon oxide films. Thin Solid Films 3(5), 341–365 (1969)CrossRef
9.
Zurück zum Zitat A. Jonscher, Electronic properties of amorphous dielectric films. Thin Solid Films 1(3), 213–234 (1967)CrossRef A. Jonscher, Electronic properties of amorphous dielectric films. Thin Solid Films 1(3), 213–234 (1967)CrossRef
10.
Zurück zum Zitat M. Stuart, Electrode-limited to bulk-limited conduction in silicon oxide films. Phys. Status Solidi B 23(2), 595–597 (1967)CrossRef M. Stuart, Electrode-limited to bulk-limited conduction in silicon oxide films. Phys. Status Solidi B 23(2), 595–597 (1967)CrossRef
11.
Zurück zum Zitat P.L. Young, DC electrical conduction in thin Ta2O5 films. I. Bulk-limited conduction. J. Appl. Phys. 47(1), 235–241 (1976)CrossRef P.L. Young, DC electrical conduction in thin Ta2O5 films. I. Bulk-limited conduction. J. Appl. Phys. 47(1), 235–241 (1976)CrossRef
12.
Zurück zum Zitat P. Joshi, S. Desu, Structural and electrical characteristics of rapid thermally processed ferroelectric Bi4Ti3O12 thin films prepared by metalorganic solution deposition technique. J. Appl. Phys. 80, 2349 (1996)CrossRef P. Joshi, S. Desu, Structural and electrical characteristics of rapid thermally processed ferroelectric Bi4Ti3O12 thin films prepared by metalorganic solution deposition technique. J. Appl. Phys. 80, 2349 (1996)CrossRef
13.
Zurück zum Zitat S. Zafar, R.E. Jones, B. Jiang, B. White, V. Kaushik, S. Gillespie, The electronic conduction mechanism in barium strontium titanate thin films. Appl. Phys. Lett. 73(24), 3533–3535 (1998)CrossRef S. Zafar, R.E. Jones, B. Jiang, B. White, V. Kaushik, S. Gillespie, The electronic conduction mechanism in barium strontium titanate thin films. Appl. Phys. Lett. 73(24), 3533–3535 (1998)CrossRef
14.
Zurück zum Zitat J. Chutia, K. Barua, DC conduction phenomenon in polyvinylacetate films. J. Phys. D Appl. Phys. 13, L9 (1980)CrossRef J. Chutia, K. Barua, DC conduction phenomenon in polyvinylacetate films. J. Phys. D Appl. Phys. 13, L9 (1980)CrossRef
15.
Zurück zum Zitat K. Ikezaki, T. Kaneko, T. Sakakibara, Effect of crystallinity on electrical conduction in polypropylene. Jpn. J. Appl. Phys. 20(3), 609 (1981)CrossRef K. Ikezaki, T. Kaneko, T. Sakakibara, Effect of crystallinity on electrical conduction in polypropylene. Jpn. J. Appl. Phys. 20(3), 609 (1981)CrossRef
16.
Zurück zum Zitat M. Ieda, M. Nagao, M. Hikita, High-field conduction and breakdown in insulating polymers. Present situation and future prospects. IEEE Trans. Dielectr. Electr. Insul. 1(5), 934–945 (1994)CrossRef M. Ieda, M. Nagao, M. Hikita, High-field conduction and breakdown in insulating polymers. Present situation and future prospects. IEEE Trans. Dielectr. Electr. Insul. 1(5), 934–945 (1994)CrossRef
17.
Zurück zum Zitat M. Ieda, Electrical conduction and carrier traps in polymeric materials. IEEE Trans. Electr. Insul. 3, 162–178 (1984)CrossRef M. Ieda, Electrical conduction and carrier traps in polymeric materials. IEEE Trans. Electr. Insul. 3, 162–178 (1984)CrossRef
18.
Zurück zum Zitat P. Blom, C. Tanase, D. De Leeuw, R. Coehoorn, Thickness scaling of the space-charge-limited current in poly (p-phenylene vinylene). Appl Phys. Lett. 86(9), 092105–092105-092103 (2005)CrossRef P. Blom, C. Tanase, D. De Leeuw, R. Coehoorn, Thickness scaling of the space-charge-limited current in poly (p-phenylene vinylene). Appl Phys. Lett. 86(9), 092105–092105-092103 (2005)CrossRef
19.
Zurück zum Zitat G. Teyssedre, C. Laurent, Charge transport modeling in insulating polymers: from molecular to macroscopic scale. IEEE Trans. Dielectr. Electr. Insul. 12(5), 857–875 (2005)CrossRef G. Teyssedre, C. Laurent, Charge transport modeling in insulating polymers: from molecular to macroscopic scale. IEEE Trans. Dielectr. Electr. Insul. 12(5), 857–875 (2005)CrossRef
20.
Zurück zum Zitat J. Vermeer, The electrical conduction of glass at high field strengths. Physica 22(6–12), 1257–1268 (1956)CrossRef J. Vermeer, The electrical conduction of glass at high field strengths. Physica 22(6–12), 1257–1268 (1956)CrossRef
21.
Zurück zum Zitat G. Moridi, A. Nouruzi, C. Hogarth, Electrical properties of barium–borosilicate glasses. J. Mater. Sci. 26(23), 6271–6274 (1991)CrossRef G. Moridi, A. Nouruzi, C. Hogarth, Electrical properties of barium–borosilicate glasses. J. Mater. Sci. 26(23), 6271–6274 (1991)CrossRef
22.
Zurück zum Zitat A. Doi, Ionic conduction and conduction polarization in oxide glass. J. Mater. Sci. 22(3), 761–769 (1987)CrossRef A. Doi, Ionic conduction and conduction polarization in oxide glass. J. Mater. Sci. 22(3), 761–769 (1987)CrossRef
23.
Zurück zum Zitat N.J. Smith, C.G. Pantano, Structural and compositional modification of a barium boroaluminosilicate glass surface by thermal poling. Appl. Phys. A 116(2), 529–543 (2014)CrossRef N.J. Smith, C.G. Pantano, Structural and compositional modification of a barium boroaluminosilicate glass surface by thermal poling. Appl. Phys. A 116(2), 529–543 (2014)CrossRef
24.
Zurück zum Zitat J.F. Scott, Ferroelectric Memories, vol. 3 (Springer, Berlin, 2000) J.F. Scott, Ferroelectric Memories, vol. 3 (Springer, Berlin, 2000)
25.
Zurück zum Zitat P. Dash, Dynamics of Space Charge Polarization and Electrical Conduction in Low Alkali Boroaluminosilicate Glasses (The Pennsylvania State University, University Park, 2013) P. Dash, Dynamics of Space Charge Polarization and Electrical Conduction in Low Alkali Boroaluminosilicate Glasses (The Pennsylvania State University, University Park, 2013)
26.
Zurück zum Zitat N. Mott, Conduction in non-crystalline systems: VII. Non-ohmic behaviour and switching. Philos. Mag. 24(190), 911–934 (1971)CrossRef N. Mott, Conduction in non-crystalline systems: VII. Non-ohmic behaviour and switching. Philos. Mag. 24(190), 911–934 (1971)CrossRef
27.
Zurück zum Zitat K. Kao, W. Hwang, Electronic Transport in Solids (Pregamon, London, 1981) K. Kao, W. Hwang, Electronic Transport in Solids (Pregamon, London, 1981)
28.
Zurück zum Zitat J.G. Simmons, Poole–Frenkel effect and Schottky effect in metal-insulator-metal systems. Phys. Rev. 155(3), 657 (1967)CrossRef J.G. Simmons, Poole–Frenkel effect and Schottky effect in metal-insulator-metal systems. Phys. Rev. 155(3), 657 (1967)CrossRef
29.
Zurück zum Zitat P. Li, T.-M. Lu, Conduction mechanisms in BaTiO3 thin films. Phys. Rev. B 43(17), 14261 (1991)CrossRef P. Li, T.-M. Lu, Conduction mechanisms in BaTiO3 thin films. Phys. Rev. B 43(17), 14261 (1991)CrossRef
30.
Zurück zum Zitat R. Nelson, Electronic conduction in glass. J. Appl. Phys. 34(3), 629–631 (1963)CrossRef R. Nelson, Electronic conduction in glass. J. Appl. Phys. 34(3), 629–631 (1963)CrossRef
31.
Zurück zum Zitat J.G. Simmons, Richardson–Schottky effect in solids. Phys. Rev. Lett. 15(25), 967–968 (1965)CrossRef J.G. Simmons, Richardson–Schottky effect in solids. Phys. Rev. Lett. 15(25), 967–968 (1965)CrossRef
Metadaten
Titel
High electric field conduction in low-alkali boroaluminosilicate glass
verfasst von
Doo Hyun Choi
Clive Randall
Eugene Furman
Michael Lanagan
Publikationsdatum
08.05.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 12/2015
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-015-3077-1

Weitere Artikel der Ausgabe 12/2015

Journal of Materials Science: Materials in Electronics 12/2015 Zur Ausgabe

Neuer Inhalt