Skip to main content

2020 | OriginalPaper | Buchkapitel

High-Fidelity Static Aeroelastic Simulations of the Common Research Model

verfasst von : Jan Navrátil

Erschienen in: Flexible Engineering Toward Green Aircraft

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Current aircraft design leads to increased flexibility of the airframe as a result of modern materials application or aerodynamically efficient slender wings. The airframe flexibility influences the aerodynamic performance and it might significantly impact the aeroelastic effects, which can be more easily excited by rigid body motions than in case of stiffer structures. The potential aeroelastic phenomena can occur in large range of speeds involving transonic regime, where the non-linear flow effects significantly influence the flutter speed. Common aeroelastic analysis tools are mostly based on the linear theories for aerodynamic predictions, thus they fail to predict mentioned non-linear effect. This paper presents the first step in the design of high-fidelity aeroelastic simulation tool. Currently, it allows to perform static aeroelastic simulations by coupling Computational Fluid Dynamics solver with Matlab based Finite Element solver. The structural solver is a linear elasticity solver which is able to solve either models consisting of beam elements or arbitrary models using stiffness and mass matrices exported from Nastran solver. The aeroelastic interface is based on the Radial Basic Functions. The test case studied in this work is a static aeroelastic simulation of the Common Research Model in the transonic conditions. The structural models tested are a wing-box finite element model and a beam stick model which is statically equivalent to the wing-box model. The comparison of results using respective structural models shows good agreement in aerodynamic properties of the model wing at static equilibrium state.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alonso, J. J., Martinelli, L., & Jameson, A. (1995). Multigrid unsteady Navier-Stokes calculations with aeroelastic applications. In AIAA paper. Citeseer. Alonso, J. J., Martinelli, L., & Jameson, A. (1995). Multigrid unsteady Navier-Stokes calculations with aeroelastic applications. In AIAA paper. Citeseer.
2.
Zurück zum Zitat Amoignon, O., & Berggren, M. (2003). Discrete adjoint-based shape optimization for an edge-based finite-volume solver. In Computational fluid and solid mechanics (pp. 2190–2193). Elsevier. Amoignon, O., & Berggren, M. (2003). Discrete adjoint-based shape optimization for an edge-based finite-volume solver. In Computational fluid and solid mechanics (pp. 2190–2193). Elsevier.
3.
Zurück zum Zitat Amoignon, O., Navrátil, J., & Hradil, J. (2014). Study of parameterizations in the project CEDESA. AIAA Paper, 570. Amoignon, O., Navrátil, J., & Hradil, J. (2014). Study of parameterizations in the project CEDESA. AIAA Paper, 570.
4.
Zurück zum Zitat Batina, J. T. (1990). Unsteady Euler airfoil solutions using unstructured dynamic meshes. AIAA Journal, 28(8). Batina, J. T. (1990). Unsteady Euler airfoil solutions using unstructured dynamic meshes. AIAA Journal, 28(8).
5.
Zurück zum Zitat Beckert, A., & Wenland, H. (2001). Multivariate interpolation for fluid-structure-interaction problems using radial basis functions. Aerospace Science and Technology, 5, 125–134. Beckert, A., & Wenland, H. (2001). Multivariate interpolation for fluid-structure-interaction problems using radial basis functions. Aerospace Science and Technology, 5, 125–134.
6.
Zurück zum Zitat Bendiksen, O. O. (1987). Transonic flutter analysis using the Euler equations. In 28th Structures, Structural Dynamics and Materials Conference (p. 911). Bendiksen, O. O. (1987). Transonic flutter analysis using the Euler equations. In 28th Structures, Structural Dynamics and Materials Conference (p. 911).
7.
Zurück zum Zitat Blom, F. J. (2000). Considerations on the spring analogy. International Journal for Numerical Methods in Fluids, 32(6), 647–668.ADSCrossRef Blom, F. J. (2000). Considerations on the spring analogy. International Journal for Numerical Methods in Fluids, 32(6), 647–668.ADSCrossRef
9.
Zurück zum Zitat De Boer, A., Van der Schoot, M., & Bijl, H. (2007). Mesh deformation based on radial basis function interpolation. Computers & Structures, 85(11), 784–795.CrossRef De Boer, A., Van der Schoot, M., & Bijl, H. (2007). Mesh deformation based on radial basis function interpolation. Computers & Structures, 85(11), 784–795.CrossRef
10.
Zurück zum Zitat Dettmer, W. G., & Perić, D. (2013). A new staggered scheme for fluid-structure interaction. International Journal for Numerical Methods in Engineering, 93(1), 1–22.ADSMathSciNetCrossRef Dettmer, W. G., & Perić, D. (2013). A new staggered scheme for fluid-structure interaction. International Journal for Numerical Methods in Engineering, 93(1), 1–22.ADSMathSciNetCrossRef
11.
Zurück zum Zitat Dunning, P. D., Stanford, B. K., & Kim, H. A. (2014). Aerostructural level set topology optimization for a common research model wing. In 10th AIAA Multidisciplinary Design Optimization Conference, National Harbor, MD, USA, 13–17 January 2014 (pp. 1–21). Dunning, P. D., Stanford, B. K., & Kim, H. A. (2014). Aerostructural level set topology optimization for a common research model wing. In 10th AIAA Multidisciplinary Design Optimization Conference, National Harbor, MD, USA, 13–17 January 2014 (pp. 1–21).
12.
Zurück zum Zitat Eliasson, P. (2002). EDGE, a Navier-Stokes solver for unstructured grids. In Proceedings to Finite Volumes for Complex Applications III (pp. 527–534). ISBN 1 9039 9634 1. Eliasson, P. (2002). EDGE, a Navier-Stokes solver for unstructured grids. In Proceedings to Finite Volumes for Complex Applications III (pp. 527–534). ISBN 1 9039 9634 1.
13.
Zurück zum Zitat Farhat, C., Van der Zee, K. G., & Geuzaine, P. (2006). Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Computer Methods in Applied Mechanics and Engineering, 195(17), 1973–2001.ADSMathSciNetCrossRef Farhat, C., Van der Zee, K. G., & Geuzaine, P. (2006). Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Computer Methods in Applied Mechanics and Engineering, 195(17), 1973–2001.ADSMathSciNetCrossRef
14.
Zurück zum Zitat Feng, Z., Soulaı, A., Saad, Y., et al. (2009). Nonlinear Krylov acceleration for CFD-based aeroelasticity. Journal of Fluids and Structures, 25(1), 26–41.ADSCrossRef Feng, Z., Soulaı, A., Saad, Y., et al. (2009). Nonlinear Krylov acceleration for CFD-based aeroelasticity. Journal of Fluids and Structures, 25(1), 26–41.ADSCrossRef
15.
Zurück zum Zitat Field, D. A. (1988). Laplacian smoothing and Delaunay triangulations. Communications in Applied Numerical Methods, 4(6), 709–712.CrossRef Field, D. A. (1988). Laplacian smoothing and Delaunay triangulations. Communications in Applied Numerical Methods, 4(6), 709–712.CrossRef
16.
Zurück zum Zitat Freitag, L. A. (1997). On combining Laplacian and optimization-based mesh smoothing techniques. In Trends in unstructured mesh generation (pp. 37–43). Freitag, L. A. (1997). On combining Laplacian and optimization-based mesh smoothing techniques. In Trends in unstructured mesh generation (pp. 37–43).
17.
Zurück zum Zitat Heeg, J., Chwalowski, P., Florance, J. P., Wieseman, C. D., & Schuster, D. M. (2013). Perry Boyd: Overview of the aeroelastic prediction workshop. In 51st AIAA Aerospace Sciences Meeting (p. 2002). Reston, Virginia: American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2013-783. Heeg, J., Chwalowski, P., Florance, J. P., Wieseman, C. D., & Schuster, D. M. (2013). Perry Boyd: Overview of the aeroelastic prediction workshop. In 51st AIAA Aerospace Sciences Meeting (p. 2002). Reston, Virginia: American Institute of Aeronautics and Astronautics. https://​doi.​org/​10.​2514/​6.​2013-783.
18.
Zurück zum Zitat Heeg, J., Chwalowski, P., Raveh, D. E., Dalenbring, M. J., & Jirasek, A. (2015). Plans and example results for the 2nd AIAA aeroelastic prediction workshop. In 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (p. 2013). Reston, Virginia: American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2015-0437. Heeg, J., Chwalowski, P., Raveh, D. E., Dalenbring, M. J., & Jirasek, A. (2015). Plans and example results for the 2nd AIAA aeroelastic prediction workshop. In 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (p. 2013). Reston, Virginia: American Institute of Aeronautics and Astronautics. https://​doi.​org/​10.​2514/​6.​2015-0437.
20.
Zurück zum Zitat Jameson, A. (1991). Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. In 10th Computational Fluid Dynamics Conference, Fluid Dynamics and Co-located Conferences. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.1991-1596. Jameson, A. (1991). Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. In 10th Computational Fluid Dynamics Conference, Fluid Dynamics and Co-located Conferences. American Institute of Aeronautics and Astronautics. https://​doi.​org/​10.​2514/​6.​1991-1596.
21.
Zurück zum Zitat Jutte, C. V., Stanford, B. K., Wieseman, C. D., & Moore, J. B. (2014). Aeroelastic tailoring of the NASA common research model via novel material and structural configurations. In AIAA SciTech Conference (pp. 13–17). Jutte, C. V., Stanford, B. K., Wieseman, C. D., & Moore, J. B. (2014). Aeroelastic tailoring of the NASA common research model via novel material and structural configurations. In AIAA SciTech Conference (pp. 13–17).
22.
Zurück zum Zitat Kenway, G. K., & Martins, J. R. (2014). Multipoint high-fidelity aerostructural optimization of a transport aircraft configuration. Journal of Aircraft, 51(1), 144–160.CrossRef Kenway, G. K., & Martins, J. R. (2014). Multipoint high-fidelity aerostructural optimization of a transport aircraft configuration. Journal of Aircraft, 51(1), 144–160.CrossRef
23.
Zurück zum Zitat Kenway, G. K., Martins, J. R., & Kennedy, G. J. (2014). Aerostructural optimization of the common research model configuration. Group (ADODG), 6(7), 8–9. Kenway, G. K., Martins, J. R., & Kennedy, G. J. (2014). Aerostructural optimization of the common research model configuration. Group (ADODG), 6(7), 8–9.
24.
Zurück zum Zitat Küssner, H. G. (1929). Schwingungen von flugzeugflugeln. Jahrbuch der deutscher Versuchsanstalt für Luftfahrt (especially Section E3 Einfluss der Baustoff-Dämpfung) (pp. 319–320). Küssner, H. G. (1929). Schwingungen von flugzeugflugeln. Jahrbuch der deutscher Versuchsanstalt für Luftfahrt (especially Section E3 Einfluss der Baustoff-Dämpfung) (pp. 319–320).
25.
Zurück zum Zitat Küssner, H. G. (1936). Zusammenfassender bericht über den instationären auftrieb von flügeln. Luftfahrtforschung, 13(12), 410–424.MATH Küssner, H. G. (1936). Zusammenfassender bericht über den instationären auftrieb von flügeln. Luftfahrtforschung, 13(12), 410–424.MATH
26.
Zurück zum Zitat Lee-Rausch, E., & Baitina, J. T. (1996). Wing flutter computations using an aerodynamic model based on the Navier-Stokes equations. Journal of Aircraft, 33(6), 1139–1147.CrossRef Lee-Rausch, E., & Baitina, J. T. (1996). Wing flutter computations using an aerodynamic model based on the Navier-Stokes equations. Journal of Aircraft, 33(6), 1139–1147.CrossRef
27.
Zurück zum Zitat Liakopoulos, P. I., & Giannakoglou, K. C. (2006). Unstructured remeshing using an efficient smoothing scheme approach. In ECCOMAS CFD 2006: Proceedings of the European Conference on Computational Fluid Dynamics, Egmond aan Zee, The Netherlands, 5–8 September 2006. Delft University of Technology; European Community on Computational Methods in Applied Sciences (ECCOMAS). Liakopoulos, P. I., & Giannakoglou, K. C. (2006). Unstructured remeshing using an efficient smoothing scheme approach. In ECCOMAS CFD 2006: Proceedings of the European Conference on Computational Fluid Dynamics, Egmond aan Zee, The Netherlands, 5–8 September 2006. Delft University of Technology; European Community on Computational Methods in Applied Sciences (ECCOMAS).
28.
Zurück zum Zitat Luke, E., Collins, E., & Blades, E. (2012). A fast mesh deformation method using explicit interpolation. Journal of Computational Physics, 231(2), 586–601.ADSMathSciNetCrossRef Luke, E., Collins, E., & Blades, E. (2012). A fast mesh deformation method using explicit interpolation. Journal of Computational Physics, 231(2), 586–601.ADSMathSciNetCrossRef
29.
Zurück zum Zitat Lyu, Z., Kenway, G. K., & Martins, J. R. (2014). Aerodynamic shape optimization investigations of the common research model wing benchmark. AIAA Journal, 53(4), 968–985.ADSCrossRef Lyu, Z., Kenway, G. K., & Martins, J. R. (2014). Aerodynamic shape optimization investigations of the common research model wing benchmark. AIAA Journal, 53(4), 968–985.ADSCrossRef
30.
Zurück zum Zitat Navrátil, J. (2016). New approaches in numerical aeroelasticity applied in aerodynamic optimization of elastic wing (Ph.D. thesis). Brno University of Technology. Navrátil, J. (2016). New approaches in numerical aeroelasticity applied in aerodynamic optimization of elastic wing (Ph.D. thesis). Brno University of Technology.
32.
Zurück zum Zitat Rendall, T., & Allen, C. (2008). Unified fluid-structure interpolation and mesh motion using radial basis functions. International Journal for Numerical Methods in Engineering, 74(10), 1519–1559.ADSMathSciNetCrossRef Rendall, T., & Allen, C. (2008). Unified fluid-structure interpolation and mesh motion using radial basis functions. International Journal for Numerical Methods in Engineering, 74(10), 1519–1559.ADSMathSciNetCrossRef
33.
Zurück zum Zitat Rodden, W. P. (1997). The development of the doublet-lattice method. Proceedings of the CEAS/International Forum on Aeroelasticity and Structural, 2, 1–7. Rodden, W. P. (1997). The development of the doublet-lattice method. Proceedings of the CEAS/International Forum on Aeroelasticity and Structural, 2, 1–7.
34.
Zurück zum Zitat Theodorsen, T. (1935). General theory of aerodynamic instability and the mechanism of flutter (NACA Report 496). Theodorsen, T. (1935). General theory of aerodynamic instability and the mechanism of flutter (NACA Report 496).
35.
Zurück zum Zitat Thompson, E., Kolonay, R., Eastep, F., & Camberos, J. (2007). Aeroelastic analysis with transpiration enabled Euler flow solver. In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (p. 2331). Thompson, E., Kolonay, R., Eastep, F., & Camberos, J. (2007). Aeroelastic analysis with transpiration enabled Euler flow solver. In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (p. 2331).
36.
Zurück zum Zitat van Zuijlen, A. H., & Bijl, H. (2005). Implicit and explicit higher order time integration schemes for structural dynamics and fluid-structure interaction computations. Computers & Structures, 83(2), 93–105.CrossRef van Zuijlen, A. H., & Bijl, H. (2005). Implicit and explicit higher order time integration schemes for structural dynamics and fluid-structure interaction computations. Computers & Structures, 83(2), 93–105.CrossRef
37.
Zurück zum Zitat Vassberg, J., Dehaan, M., Rivers, M., & Wahls, R. (2008). Development of a common research model for applied CFD validation studies. In 26th AIAA Applied Aerodynamics Conference, Guidance, Navigation, and Control and Co-located Conferences. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2008-6919. Vassberg, J., Dehaan, M., Rivers, M., & Wahls, R. (2008). Development of a common research model for applied CFD validation studies. In 26th AIAA Applied Aerodynamics Conference, Guidance, Navigation, and Control and Co-located Conferences. American Institute of Aeronautics and Astronautics. https://​doi.​org/​10.​2514/​6.​2008-6919.
38.
Zurück zum Zitat Von Wagner, H. (1925). Dynamischer auftrieb von tragflugeln. Zeitchrift fuer Angewandte Mathematik und Mecdhanik, 5, 17.ADSCrossRef Von Wagner, H. (1925). Dynamischer auftrieb von tragflugeln. Zeitchrift fuer Angewandte Mathematik und Mecdhanik, 5, 17.ADSCrossRef
39.
Zurück zum Zitat Wendland, H. (2008). Hybrid methods for fluid-structure-interaction problems in aeroelasticity. In Meshfree methods for partial differential equations IV (pp. 335–358). Springer. Wendland, H. (2008). Hybrid methods for fluid-structure-interaction problems in aeroelasticity. In Meshfree methods for partial differential equations IV (pp. 335–358). Springer.
40.
Zurück zum Zitat Yates, E. C., Jr. (1966). Modified-strip-analysis method for predicting wing flutter at subsonic to hypersonic speeds. Journal of Aircraft, 3(1), 25–29. Yates, E. C., Jr. (1966). Modified-strip-analysis method for predicting wing flutter at subsonic to hypersonic speeds. Journal of Aircraft, 3(1), 25–29.
41.
Zurück zum Zitat Yurkovich, R. (2003). Status of unsteady aerodynamic prediction for flutter of high-performance aircraft. Journal of Aircraft, 40(5), 832–842.CrossRef Yurkovich, R. (2003). Status of unsteady aerodynamic prediction for flutter of high-performance aircraft. Journal of Aircraft, 40(5), 832–842.CrossRef
42.
Zurück zum Zitat Zeng, D., & Ethier, C. R. (2005). A semi-torsional spring analogy model for updating unstructured meshes in 3d moving domains. Finite Elements in Analysis and Design, 41(11), 1118–1139.CrossRef Zeng, D., & Ethier, C. R. (2005). A semi-torsional spring analogy model for updating unstructured meshes in 3d moving domains. Finite Elements in Analysis and Design, 41(11), 1118–1139.CrossRef
Metadaten
Titel
High-Fidelity Static Aeroelastic Simulations of the Common Research Model
verfasst von
Jan Navrátil
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-36514-1_4

    Premium Partner