Skip to main content

2024 | OriginalPaper | Buchkapitel

High Frequency Weighted Resolvent Estimates for the Dirichlet Laplacian in the Exterior Domain

verfasst von : Vladimir Georgiev, Mario Rastrelli

Erschienen in: New Trends in the Applications of Differential Equations in Sciences

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we want to present several resolvent estimates for the Dirichlet Laplacian in exterior domain. The estimates evaluate a weighted \(L^2\) norm with a weight measured by a negative power of the distance from the boundary. We consider an exterior domain \(\varOmega \), that is the complementary of a compact in \(\textbf{R}^n\), and the inhomogeneous Helmotz equation on it. If the exterior domain is non-trapping, there are cut-off resolvent estimates without weights. Our main result is that we can improve the estimates putting the weights. The main idea is the polar change of coordinates, where \(r=d(x,\partial \varOmega )\), that allows us to use the Hardy inequality close to the boundary of the domain. Kato smoothing estimate is obtained as a consequence of the weighted cut-off resolvent estimates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abou Shakra, F.: On 2D nonlinear Schrödinger equation on non-trapping exterior domains, Rev. Mat. Iberoam. 31, no. 2, 657–680 (2015). Abou Shakra, F.: On 2D nonlinear Schrödinger equation on non-trapping exterior domains, Rev. Mat. Iberoam. 31, no. 2, 657–680 (2015).
2.
Zurück zum Zitat Anton, R.: Global existence for defocusing cubic NLS and Gross-Pitaevskii equations in three dimensional exterior domains, J. Math. Pures Appl. (9) 89, no. 4, 335–354 (2008). Anton, R.: Global existence for defocusing cubic NLS and Gross-Pitaevskii equations in three dimensional exterior domains, J. Math. Pures Appl. (9) 89, no. 4, 335–354 (2008).
3.
Zurück zum Zitat Blair, M. D.: On refined local smoothing estimates for the Schrödinger equation in exterior domains, Comm. Partial Differential Equations 39, no. 5, 781–805 (2014). Blair, M. D.: On refined local smoothing estimates for the Schrödinger equation in exterior domains, Comm. Partial Differential Equations 39, no. 5, 781–805 (2014).
4.
Zurück zum Zitat Blair, M. D., Smith, H. F., Sogge, C. D. : Strichartz estimates and the nonlinear Schrödinger equation on manifolds with boundary, Math. Ann. 354, no. 4, 1397–1430 (2012). Blair, M. D., Smith, H. F., Sogge, C. D. : Strichartz estimates and the nonlinear Schrödinger equation on manifolds with boundary, Math. Ann. 354, no. 4, 1397–1430 (2012).
5.
Zurück zum Zitat Blair, M. D.,Smith, H. F., Sogge,C. D. : On Strichartz estimates for Schrödinger operators in compact manifolds with boundary, Proc. Amer. Math. Soc. 136 , no. 1, 247–256 (2008). MR2350410 Blair, M. D.,Smith, H. F., Sogge,C. D. : On Strichartz estimates for Schrödinger operators in compact manifolds with boundary, Proc. Amer. Math. Soc. 136 , no. 1, 247–256 (2008). MR2350410
8.
Zurück zum Zitat Cardoso, F., Vodev, G.: High frequency resolvent estimates and energy decay of solutions to the wave equation. Mat. Contemp. 26, 15–22 (2004). Cardoso, F., Vodev, G.: High frequency resolvent estimates and energy decay of solutions to the wave equation. Mat. Contemp. 26, 15–22 (2004).
9.
Zurück zum Zitat Georgiev, V., Rastrelli, M.: On the square of Laplacian with inverse square potential. New trends in the applications of differential equations in sciences, Springer Proc. Math. Stat., 412, Springer, 199–207 (2023). Georgiev, V., Rastrelli, M.: On the square of Laplacian with inverse square potential. New trends in the applications of differential equations in sciences, Springer Proc. Math. Stat., 412, Springer, 199–207 (2023).
10.
Zurück zum Zitat Georgiev, V., Li, C.: On the scattering problem for the nonlinear Schrödinger equation with a potential in 2D. Phys. D 398, 208–218 (2019). Georgiev, V., Li, C.: On the scattering problem for the nonlinear Schrödinger equation with a potential in 2D. Phys. D 398, 208–218 (2019).
11.
Zurück zum Zitat Georgiev, V., Taniguchi, K.: On fractional Leibniz rule for Dirichlet Laplacian in exterior domain. Discrete Contin. Dyn. Syst. 39, no. 2, 1101–1115 (2019). Georgiev, V., Taniguchi, K.: On fractional Leibniz rule for Dirichlet Laplacian in exterior domain. Discrete Contin. Dyn. Syst. 39, no. 2, 1101–1115 (2019).
12.
Zurück zum Zitat Ivanovici, O.: On the Schrödinger equation outside strictly convex obstacles, Anal. PDE 3, no. 3, 261-293 (2010). Ivanovici, O.: On the Schrödinger equation outside strictly convex obstacles, Anal. PDE 3, no. 3, 261-293 (2010).
13.
Zurück zum Zitat Ivanovici, O., Lebeau, G.: Dispersion for the wave and the Schrödinger equations outside strictly convex obstacles and counterexamples, C. R. Math. Acad. Sci. Paris 355, no. 7, 774–779 (2017). Ivanovici, O., Lebeau, G.: Dispersion for the wave and the Schrödinger equations outside strictly convex obstacles and counterexamples, C. R. Math. Acad. Sci. Paris 355, no. 7, 774–779 (2017).
14.
Zurück zum Zitat Karmous, M.: Strichartz estimates for regularized Schrödinger equations in exterior domains, J.K15 Abstr. Differ. Equ. Appl. 6, no. 1, 37–51 (2015). Karmous, M.: Strichartz estimates for regularized Schrödinger equations in exterior domains, J.K15 Abstr. Differ. Equ. Appl. 6, no. 1, 37–51 (2015).
15.
Zurück zum Zitat Kato, T.: Wave operators and similarity for some non-selfadjoint operators. Math. Ann., 162, 258–279, (1965/1966). Kato, T.: Wave operators and similarity for some non-selfadjoint operators. Math. Ann., 162, 258–279, (1965/1966).
16.
Zurück zum Zitat Killip, R., Visan, M.,Zhang, X.: The focusing cubic NLS on exterior domains in three dimensions, Appl. Math. Res. Express. AMRX 1, 146–180 (2016). Killip, R., Visan, M.,Zhang, X.: The focusing cubic NLS on exterior domains in three dimensions, Appl. Math. Res. Express. AMRX 1, 146–180 (2016).
17.
Zurück zum Zitat Killip, R.,Visan, M., Zhang, X.: Quintic NLS in the exterior of a strictly convex obstacle, Amer. J. Math. 138, no. 5, 1193–1346 (2016). Killip, R.,Visan, M., Zhang, X.: Quintic NLS in the exterior of a strictly convex obstacle, Amer. J. Math. 138, no. 5, 1193–1346 (2016).
21.
Zurück zum Zitat Reed, M., Barry S.: Methods of modern mathematical physics. IV. Analysis of operators. Academic Press , (1978). Reed, M., Barry S.: Methods of modern mathematical physics. IV. Analysis of operators. Academic Press , (1978).
22.
Zurück zum Zitat Yang, K.: The focusing NLS on exterior domains in three dimensions, Commun. Pure Appl.Yan17 Anal. 16, no. 6, 2269–2297 (2017). Yang, K.: The focusing NLS on exterior domains in three dimensions, Commun. Pure Appl.Yan17 Anal. 16, no. 6, 2269–2297 (2017).
Metadaten
Titel
High Frequency Weighted Resolvent Estimates for the Dirichlet Laplacian in the Exterior Domain
verfasst von
Vladimir Georgiev
Mario Rastrelli
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-53212-2_9