Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 3/2018

12.04.2018 | Original Article

High-grade activated carbon from pyrolytic biochar of Jatropha and Karanja oil seed cakes—Indian biodiesel industry wastes

verfasst von: Sonal Garg, Piyali Das

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Most of the commercially available pyrolysis plants use fluidized bed technologies where bio-oil is the major product and the biochar produced is combusted for process heat. However, auger-based technologies are now gaining importance because of their small to medium scale of operation and decentralized nature where biochar is obtained as a by-product. One of the factors which may greatly influence the techno-economic viability of such decentralized plants is making high-grade carbon from pyrolytic biochar. In the present study, Jatropha and Karanja oil seed cake-based biochar is obtained as a by-product in a pilot-scale (20 kg/h) direct gas-fired auger pyrolysis process at 500 °C under fast pyrolysis conditions that is originally aimed at maximizing the bio-oil yield. The biochar has low surface area and porosity. To value add to this carbon, downstream physical and chemical activation are carried out in an externally heated laboratory-scale reactor. CO2 activation resulted in the formation of activated carbon with BET surface area up to ~ 200 m2/g with marginal improvement in porosity, while K2CO3 activation enhanced the surface area to as high as 2400 m2/g along with substantial enhancement of porosity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Siyasukh A, Maneeprom P, Larpkiattaworn S, Tonanon N, Tanthapanichakoon W, Tamon H, Charinpanitkul T (2008) Preparation of a carbon monolith with hierarchical porous structure by ultrasonic irradiation followed by carbonization, physical and chemical activation. Carbon 46:1309–1315CrossRef Siyasukh A, Maneeprom P, Larpkiattaworn S, Tonanon N, Tanthapanichakoon W, Tamon H, Charinpanitkul T (2008) Preparation of a carbon monolith with hierarchical porous structure by ultrasonic irradiation followed by carbonization, physical and chemical activation. Carbon 46:1309–1315CrossRef
2.
Zurück zum Zitat Romero-Anaya AJ, Ouzzine M, Lillo-Rodenas MA, Linares-Solano A (2014) Spherical carbons: synthesis, characterization and activation processes. Carbon 68:296–307CrossRef Romero-Anaya AJ, Ouzzine M, Lillo-Rodenas MA, Linares-Solano A (2014) Spherical carbons: synthesis, characterization and activation processes. Carbon 68:296–307CrossRef
3.
Zurück zum Zitat Rios RVRA, Martínez-Escandell M, Molina-Sabio M, Rodríguez-Reinoso F (2006) Carbon foam prepared by pyrolysis of olive stones under steam. Carbon 44:1448–1454CrossRef Rios RVRA, Martínez-Escandell M, Molina-Sabio M, Rodríguez-Reinoso F (2006) Carbon foam prepared by pyrolysis of olive stones under steam. Carbon 44:1448–1454CrossRef
4.
Zurück zum Zitat Aworn A, Thiravetyan P, Nakbanpote W (2008) Preparation and characteristics of agricultural waste activated carbon by physical activation having micro- and mesopores. J Anal Appl Pyrolysis 82:279–285CrossRef Aworn A, Thiravetyan P, Nakbanpote W (2008) Preparation and characteristics of agricultural waste activated carbon by physical activation having micro- and mesopores. J Anal Appl Pyrolysis 82:279–285CrossRef
5.
Zurück zum Zitat Williams PT, Reed AR (2006) Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste. Biomass Bioenergy 30:144–152CrossRef Williams PT, Reed AR (2006) Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste. Biomass Bioenergy 30:144–152CrossRef
6.
Zurück zum Zitat Haber J (1991) International Union of Pure and Applied Chemistry, manual on catalyst characterization. Pure and Appl Chem 63:1227–1246CrossRef Haber J (1991) International Union of Pure and Applied Chemistry, manual on catalyst characterization. Pure and Appl Chem 63:1227–1246CrossRef
7.
Zurück zum Zitat Cordero DJ, Heras F, Alonso-Morales N, Gilarranz MA, Rodriguez JJ (2013) Porous structure and morphology of granular chars from flash and conventional pyrolysis of grape seeds. Biomass Bioenergy 54:123–132CrossRef Cordero DJ, Heras F, Alonso-Morales N, Gilarranz MA, Rodriguez JJ (2013) Porous structure and morphology of granular chars from flash and conventional pyrolysis of grape seeds. Biomass Bioenergy 54:123–132CrossRef
8.
Zurück zum Zitat Li W, Zhang LB, Peng JH, Li N, Zhu XY (2008) Preparation of high surface area activated carbons from tobacco stems with K2CO3 activation using microwave radiation. Industrial Crops Products 27:341–347CrossRef Li W, Zhang LB, Peng JH, Li N, Zhu XY (2008) Preparation of high surface area activated carbons from tobacco stems with K2CO3 activation using microwave radiation. Industrial Crops Products 27:341–347CrossRef
9.
Zurück zum Zitat Lua AC, Guo J (2000) Activated carbon prepared from oil palm stone by one-step CO2 activation for gaseous pollutant removal. Carbon 38:1089–1097CrossRef Lua AC, Guo J (2000) Activated carbon prepared from oil palm stone by one-step CO2 activation for gaseous pollutant removal. Carbon 38:1089–1097CrossRef
10.
Zurück zum Zitat Babel K, Janasiak D, Jurewicz K (2012) Electrochemical hydrogen storage in activated carbons with different pore structures derived from certain lignocellulose materials. Carbon 50:5017–5026CrossRef Babel K, Janasiak D, Jurewicz K (2012) Electrochemical hydrogen storage in activated carbons with different pore structures derived from certain lignocellulose materials. Carbon 50:5017–5026CrossRef
11.
Zurück zum Zitat Hayashi J, Horikawa T, Muroyama K, Gomes VG (2002) Activated carbon from chickpea husk by chemical activation with K2CO3: preparation and characterization. Microporous Mesoporous Mater 55:63–68CrossRef Hayashi J, Horikawa T, Muroyama K, Gomes VG (2002) Activated carbon from chickpea husk by chemical activation with K2CO3: preparation and characterization. Microporous Mesoporous Mater 55:63–68CrossRef
12.
Zurück zum Zitat Kula I, Ugurlu M, Karaoglu H, Celik A (2008) Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation. Bioresour Technol 99:492–501CrossRef Kula I, Ugurlu M, Karaoglu H, Celik A (2008) Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation. Bioresour Technol 99:492–501CrossRef
13.
Zurück zum Zitat Xin-hui D, Srinivasakannan C, Jin-hui P, Li-bo Z, Zheng-yong Z (2011) Comparison of activated carbon prepared from Jatropha hull by conventional heating and microwave heating. Biomass Bioenergy 35:3920–3926CrossRef Xin-hui D, Srinivasakannan C, Jin-hui P, Li-bo Z, Zheng-yong Z (2011) Comparison of activated carbon prepared from Jatropha hull by conventional heating and microwave heating. Biomass Bioenergy 35:3920–3926CrossRef
14.
Zurück zum Zitat Adinata D, Wan Daud WMA, Aroua MK (2007) Preparation and characterization of activated carbon from palm shell by chemical activation with K2CO3. Bioresour Technol 98:145–149CrossRef Adinata D, Wan Daud WMA, Aroua MK (2007) Preparation and characterization of activated carbon from palm shell by chemical activation with K2CO3. Bioresour Technol 98:145–149CrossRef
15.
Zurück zum Zitat Hayashi J, Kazehaya A, Muroyama K, Watkinson AP (2000) Preparation of activated carbon from lignin by chemical activation. Carbon 38:1873–1878CrossRef Hayashi J, Kazehaya A, Muroyama K, Watkinson AP (2000) Preparation of activated carbon from lignin by chemical activation. Carbon 38:1873–1878CrossRef
16.
Zurück zum Zitat Tay T, Ucar S, Karagoz S (2009) Preparation and characterization of activated carbon from waste biomass. J Hazard Mater 165:481–485CrossRef Tay T, Ucar S, Karagoz S (2009) Preparation and characterization of activated carbon from waste biomass. J Hazard Mater 165:481–485CrossRef
17.
Zurück zum Zitat Hayashi J, Horikawa T, Takeda I, Muroyama K, Nasir Ani F (2002) Preparing activated carbon from various nutshells by chemical activation with K2CO3. Carbon 40:2381–2386CrossRef Hayashi J, Horikawa T, Takeda I, Muroyama K, Nasir Ani F (2002) Preparing activated carbon from various nutshells by chemical activation with K2CO3. Carbon 40:2381–2386CrossRef
18.
Zurück zum Zitat Hayashi J, Yamamoto N, Horikawa T, Muroyama K, Gomes VG (2005) Preparation and characterization of high-specific-surface-area activated carbons from K2CO3-treated waste polyurethane. J Colloid Interface Sci 281:437–443CrossRef Hayashi J, Yamamoto N, Horikawa T, Muroyama K, Gomes VG (2005) Preparation and characterization of high-specific-surface-area activated carbons from K2CO3-treated waste polyurethane. J Colloid Interface Sci 281:437–443CrossRef
19.
Zurück zum Zitat Lahijani P, Alimuddin Z, Rahman A, Mohammadi M (2013) Ash of palm empty fruit bunch as a natural catalyst for promoting the CO2 gasification reactivity of biomass char. Bioresour Technol 132:351–355CrossRef Lahijani P, Alimuddin Z, Rahman A, Mohammadi M (2013) Ash of palm empty fruit bunch as a natural catalyst for promoting the CO2 gasification reactivity of biomass char. Bioresour Technol 132:351–355CrossRef
20.
Zurück zum Zitat Stratford JP, Hutchings TR, de Leij FA (2014) Intrinsic activation: the relationship between biomass inorganic content and porosity formation during pyrolysis. Bioresour Technol 159:104–111CrossRef Stratford JP, Hutchings TR, de Leij FA (2014) Intrinsic activation: the relationship between biomass inorganic content and porosity formation during pyrolysis. Bioresour Technol 159:104–111CrossRef
21.
Zurück zum Zitat Fierro V, Muñiz G, Basta AH, El-Saied H, Celzard A (2010) Rice straw as precursor of activated carbons: activation with ortho-phosphoric acid. J Hazard Mater 181:27–34CrossRef Fierro V, Muñiz G, Basta AH, El-Saied H, Celzard A (2010) Rice straw as precursor of activated carbons: activation with ortho-phosphoric acid. J Hazard Mater 181:27–34CrossRef
22.
Zurück zum Zitat Santhy K, Selvapathy P (2006) Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon. Bioresour Technol 97:1329–1336CrossRef Santhy K, Selvapathy P (2006) Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon. Bioresour Technol 97:1329–1336CrossRef
23.
Zurück zum Zitat Yang K, Peng J, Srinivasakannan C, Zhang L, Xia H, Duan X (2010) Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresour Technol 101:6163–6169CrossRef Yang K, Peng J, Srinivasakannan C, Zhang L, Xia H, Duan X (2010) Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresour Technol 101:6163–6169CrossRef
24.
Zurück zum Zitat Plaza MG, Pevida C, Arias B, Fermoso J, Casal MD, Martin CF, Rubiera F, Pis JJ (2009) Development of low-cost biomass-based adsorbents for post combustion CO2 capture. Fuel 88:2442–2447CrossRef Plaza MG, Pevida C, Arias B, Fermoso J, Casal MD, Martin CF, Rubiera F, Pis JJ (2009) Development of low-cost biomass-based adsorbents for post combustion CO2 capture. Fuel 88:2442–2447CrossRef
25.
Zurück zum Zitat Fathy NA, Girgis BS, Khalil LB, Farah JY (2010) Utilization of cotton stalks-biomass waste in the production of carbon adsorbents by KOH activation for removal of dye-contaminated water. Carbon Lett 11:224–234CrossRef Fathy NA, Girgis BS, Khalil LB, Farah JY (2010) Utilization of cotton stalks-biomass waste in the production of carbon adsorbents by KOH activation for removal of dye-contaminated water. Carbon Lett 11:224–234CrossRef
26.
Zurück zum Zitat Ioannidou O, Zabaniotou A (2007) Agricultural residues as precursors for activated carbon production—a review. Renew Sust Energ Rev 11:1966–2005CrossRef Ioannidou O, Zabaniotou A (2007) Agricultural residues as precursors for activated carbon production—a review. Renew Sust Energ Rev 11:1966–2005CrossRef
27.
Zurück zum Zitat Dieme MM, Villot A, Gerente C, Andres Y, Diop SN, Diawara CK (2016) Sustainable conversion of agriculture wastes into activated carbons: energy balance and arsenic removal from water. Environ Technol 3330:1–8 Dieme MM, Villot A, Gerente C, Andres Y, Diop SN, Diawara CK (2016) Sustainable conversion of agriculture wastes into activated carbons: energy balance and arsenic removal from water. Environ Technol 3330:1–8
28.
Zurück zum Zitat Foo KY, Hameed BH (2012) Preparation of activated carbon by microwave heating of langsat (Lansium domesticum) empty fruit bunch waste. Bioresour Technol 116:522–525CrossRef Foo KY, Hameed BH (2012) Preparation of activated carbon by microwave heating of langsat (Lansium domesticum) empty fruit bunch waste. Bioresour Technol 116:522–525CrossRef
29.
Zurück zum Zitat Foo KY, Hameed BH (2011) Preparation and characterization of activated carbon from sunflower seed oil residue via microwave assisted K2CO3 activation. Bioresour Technol 102:9794–9799CrossRef Foo KY, Hameed BH (2011) Preparation and characterization of activated carbon from sunflower seed oil residue via microwave assisted K2CO3 activation. Bioresour Technol 102:9794–9799CrossRef
30.
Zurück zum Zitat Angin D, Altintig E, Köse TE (2013) Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresour Technol 148:542–549CrossRef Angin D, Altintig E, Köse TE (2013) Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresour Technol 148:542–549CrossRef
31.
Zurück zum Zitat Arami-niya A, Mohd W, Wan A, Mjalli FS (2010) Using granular activated carbon prepared from oil palm shell by ZnCl2 and physical activation for methane adsorption. J Anal Appl Pyrolysis 89:197–203CrossRef Arami-niya A, Mohd W, Wan A, Mjalli FS (2010) Using granular activated carbon prepared from oil palm shell by ZnCl2 and physical activation for methane adsorption. J Anal Appl Pyrolysis 89:197–203CrossRef
32.
Zurück zum Zitat Foo KY, Hameed BH (2013) Utilization of oil palm biodiesel solid residue as renewable sources for preparation of granular activated carbon by microwave induced KOH activation. Bioresour Technol 130:696–702CrossRef Foo KY, Hameed BH (2013) Utilization of oil palm biodiesel solid residue as renewable sources for preparation of granular activated carbon by microwave induced KOH activation. Bioresour Technol 130:696–702CrossRef
33.
Zurück zum Zitat Tongpoothorn W, Sriuttha M, Homchan P, Chanthai S, Ruangviriyachai C (2011) Preparation of activated carbon derived from Jatropha curcas fruit shell by simple thermo-chemical activation and characterization of their physico-chemical properties. Chem Eng Res Des 89:335–340CrossRef Tongpoothorn W, Sriuttha M, Homchan P, Chanthai S, Ruangviriyachai C (2011) Preparation of activated carbon derived from Jatropha curcas fruit shell by simple thermo-chemical activation and characterization of their physico-chemical properties. Chem Eng Res Des 89:335–340CrossRef
34.
Zurück zum Zitat Sricharoenchaikul V, Pechyen C, Aht-Ong D, Atong D (2008) Preparation and characterization of activated carbon from the pyrolysis of physic nut (Jatropha curcas L.) waste. Energy and Fuels 22:31–37CrossRef Sricharoenchaikul V, Pechyen C, Aht-Ong D, Atong D (2008) Preparation and characterization of activated carbon from the pyrolysis of physic nut (Jatropha curcas L.) waste. Energy and Fuels 22:31–37CrossRef
35.
Zurück zum Zitat Islam MS, Rouf MA, Fujimoto S, Minowa T (2012) Preparation and characterization of activated carbon from bio-diesel by-products (Jatropha seedcake) by steam activation. Bangladesh. J Sci Ind Res 47(3):257–264 Islam MS, Rouf MA, Fujimoto S, Minowa T (2012) Preparation and characterization of activated carbon from bio-diesel by-products (Jatropha seedcake) by steam activation. Bangladesh. J Sci Ind Res 47(3):257–264
36.
Zurück zum Zitat Islam A, Sabar S, Benhouria A, Khanday WA, Asif M, Hameed BH (2017) Nanoporous activated carbon from Karanja (Pongamia pinnata) fruit hulls for methylene blue adsorption. Taiwan Inst Chem Eng 74:96–104 Islam A, Sabar S, Benhouria A, Khanday WA, Asif M, Hameed BH (2017) Nanoporous activated carbon from Karanja (Pongamia pinnata) fruit hulls for methylene blue adsorption. Taiwan Inst Chem Eng 74:96–104
37.
Zurück zum Zitat Satyawali Y, Balakrishnan M (2007) Removal of color from biomethanated distillery spentwash by treatment with activated carbons. Bioresour Technol 98:2629–2635CrossRef Satyawali Y, Balakrishnan M (2007) Removal of color from biomethanated distillery spentwash by treatment with activated carbons. Bioresour Technol 98:2629–2635CrossRef
38.
Zurück zum Zitat Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report,© IUPAC & De Gruyter). Pure Appl Chem 87(9–10):1051–1069 Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report,© IUPAC & De Gruyter). Pure Appl Chem 87(9–10):1051–1069
39.
Zurück zum Zitat William HM, Dawson EA, Barnes PA, Parkes GMB, Pears LA, Hindmarsh CJ (2009) A new low temperature approach to developing mesoporosity in metal-doped carbons for adsorption and catalysis. J Porous Mater 16:557–564CrossRef William HM, Dawson EA, Barnes PA, Parkes GMB, Pears LA, Hindmarsh CJ (2009) A new low temperature approach to developing mesoporosity in metal-doped carbons for adsorption and catalysis. J Porous Mater 16:557–564CrossRef
40.
Zurück zum Zitat Wu F, Tseng R, Juang R (2005) Comparisons of porous and adsorption properties of carbons activated by steam and KOH. J Colloid Interface Sci 283:49–56CrossRef Wu F, Tseng R, Juang R (2005) Comparisons of porous and adsorption properties of carbons activated by steam and KOH. J Colloid Interface Sci 283:49–56CrossRef
41.
Zurück zum Zitat Spiro CL, Mckee DVW, Kosky PG, Lamby EJ (1983) Catalytic CO2-gasification of graphite versus coal char. Fuel 62:180–184CrossRef Spiro CL, Mckee DVW, Kosky PG, Lamby EJ (1983) Catalytic CO2-gasification of graphite versus coal char. Fuel 62:180–184CrossRef
42.
Zurück zum Zitat Lahijani P, Zainal ZA, Mohamed AR, Mohammadi M (2014) Microwave-enhanced CO2 gasification of oil palm shell char. Bioresour Technol 158:193–200CrossRef Lahijani P, Zainal ZA, Mohamed AR, Mohammadi M (2014) Microwave-enhanced CO2 gasification of oil palm shell char. Bioresour Technol 158:193–200CrossRef
43.
Zurück zum Zitat Nabais JMV, Laginhas C, Carrott PJM, Carrott MMLR (2010) Thermal conversion of a novel biomass agricultural residue (vine shoots) into activated carbon using activation with CO2. J Anal Appl Pyrolysis 87:8–13CrossRef Nabais JMV, Laginhas C, Carrott PJM, Carrott MMLR (2010) Thermal conversion of a novel biomass agricultural residue (vine shoots) into activated carbon using activation with CO2. J Anal Appl Pyrolysis 87:8–13CrossRef
44.
Zurück zum Zitat Lua AC, Lau FY, Gua J (2006) Influence of pyrolysis condition on pore development of oil-palm shell activated carbon. J Anal Appl Pyrolysis 76:96–102CrossRef Lua AC, Lau FY, Gua J (2006) Influence of pyrolysis condition on pore development of oil-palm shell activated carbon. J Anal Appl Pyrolysis 76:96–102CrossRef
45.
Zurück zum Zitat Lua AC, Yang T, Gua J (2004) Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. J Anal Appl Pyrolysis 72:279–287CrossRef Lua AC, Yang T, Gua J (2004) Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. J Anal Appl Pyrolysis 72:279–287CrossRef
46.
Zurück zum Zitat Marsh H, Reinoso F R (2006) Characterization of activated carbon. In: Marsh H, Reinoso FR. (Eds), Activated carbon. Elsevier Sci. Tech. Books, Great Britain, 143–242 Marsh H, Reinoso F R (2006) Characterization of activated carbon. In: Marsh H, Reinoso FR. (Eds), Activated carbon. Elsevier Sci. Tech. Books, Great Britain, 143–242
47.
Zurück zum Zitat Gurten II, Ozmak M, Yagmur E, Aktas Z (2012) Preparation and characterisation of activated carbon from waste tea using K2CO3. Biomass Bioenergy 37:73–81CrossRef Gurten II, Ozmak M, Yagmur E, Aktas Z (2012) Preparation and characterisation of activated carbon from waste tea using K2CO3. Biomass Bioenergy 37:73–81CrossRef
Metadaten
Titel
High-grade activated carbon from pyrolytic biochar of Jatropha and Karanja oil seed cakes—Indian biodiesel industry wastes
verfasst von
Sonal Garg
Piyali Das
Publikationsdatum
12.04.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 3/2018
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-018-0308-8

Weitere Artikel der Ausgabe 3/2018

Biomass Conversion and Biorefinery 3/2018 Zur Ausgabe