Skip to main content
Erschienen in: Journal of Scientific Computing 2/2018

22.01.2018

High-Order Compact Difference Methods for Caputo-Type Variable Coefficient Fractional Sub-diffusion Equations in Conservative Form

verfasst von: Yuan-Ming Wang, Lei Ren

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A set of high-order compact finite difference methods is proposed for solving a class of Caputo-type fractional sub-diffusion equations in conservative form. The diffusion coefficient of the equation may be spatially variable, and the proposed methods have the global convergence order \(\mathcal{O}(\tau ^{r}+h^{4})\), where \(r\ge 2\) is a positive integer and \(\tau \) and h are the temporal and spatial steps. Such new high-order compact difference methods greatly improve the known methods in the literature. The local truncation error and the solvability of the methods are discussed in detail. By applying a discrete energy technique to the matrix form of the methods, a rigorous theoretical analysis of the stability and convergence of the methods is carried out for the case of \(2\le r\le 6\), and the optimal error estimates in the weighted \(H^{1}\), \(L^{2}\) and \(L^{\infty }\) norms are obtained for the general case of variable coefficient. Applications are given to two model problems, and some numerical results are presented to illustrate the various convergence orders of the methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Klages, R., Radons, G., Sokolov, I.M.: Anomalous Transport: Foundations and Applications. Wiley-VCH, Weinheim (2008)CrossRef Klages, R., Radons, G., Sokolov, I.M.: Anomalous Transport: Foundations and Applications. Wiley-VCH, Weinheim (2008)CrossRef
2.
Zurück zum Zitat Bouchaud, J.-P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)MathSciNetCrossRef Bouchaud, J.-P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)MathSciNetCrossRef
3.
Zurück zum Zitat Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29, 129–143 (2002)MathSciNetCrossRefMATH Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29, 129–143 (2002)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefMATH Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Chen, C., Liu, F., Turner, I., Anh, V.: Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation. Numer. Algorithms 54, 1–21 (2010)MathSciNetCrossRefMATH Chen, C., Liu, F., Turner, I., Anh, V.: Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation. Numer. Algorithms 54, 1–21 (2010)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Yuste, S.B., Acedo, L.: An explicit finite difference method and a new Von-Neumann type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)MathSciNetCrossRefMATH Yuste, S.B., Acedo, L.: An explicit finite difference method and a new Von-Neumann type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Mohebbi, A., Abbaszade, M., Dehghan, M.: A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term. J. Comput. Phys. 240, 36–48 (2013)MathSciNetCrossRefMATH Mohebbi, A., Abbaszade, M., Dehghan, M.: A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term. J. Comput. Phys. 240, 36–48 (2013)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)MathSciNetCrossRefMATH Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Deng, W.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2009)MathSciNetCrossRefMATH Deng, W.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2009)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Liu, Q., Liu, F., Turner, I., Anh, V.: Finite element approximation for a modified anomalous subdiffusion equation. Appl. Math. Model. 35, 4103–4116 (2011)MathSciNetCrossRefMATH Liu, Q., Liu, F., Turner, I., Anh, V.: Finite element approximation for a modified anomalous subdiffusion equation. Appl. Math. Model. 35, 4103–4116 (2011)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Ford, N.J., Xiao, J., Yan, Y.: A finite element method for the time fractional partial differential equations. Fract. Calc. Appl. Anal. 14, 454–474 (2011)MathSciNetMATH Ford, N.J., Xiao, J., Yan, Y.: A finite element method for the time fractional partial differential equations. Fract. Calc. Appl. Anal. 14, 454–474 (2011)MathSciNetMATH
12.
Zurück zum Zitat Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)MathSciNetCrossRefMATH Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Lv, C., Xu, C.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38, A2699–A2724 (2016)MathSciNetCrossRefMATH Lv, C., Xu, C.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38, A2699–A2724 (2016)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Zhang, Y.N., Sun, Z.Z.: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 230, 8713–8728 (2011)MathSciNetCrossRefMATH Zhang, Y.N., Sun, Z.Z.: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 230, 8713–8728 (2011)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Wang, Y.-M., Wang, T.: Error analysis of a high-order compact ADI method for two-dimensional fractional convection-subdiffusion equations. Calcolo 53, 301–330 (2016)MathSciNetCrossRefMATH Wang, Y.-M., Wang, T.: Error analysis of a high-order compact ADI method for two-dimensional fractional convection-subdiffusion equations. Calcolo 53, 301–330 (2016)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Liu, Q., Gu, Y.T., Zhuang, P., Liu, F., Nie, Y.F.: An implicit RBF meshless approach for time fractional diffusion equations. Comput. Mech. 48, 1–12 (2011)MathSciNetCrossRefMATH Liu, Q., Gu, Y.T., Zhuang, P., Liu, F., Nie, Y.F.: An implicit RBF meshless approach for time fractional diffusion equations. Comput. Mech. 48, 1–12 (2011)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Zoppou, C., Knight, J.H.: Analytical solution of a spatially variable coefficient advection–diffusion equation in up to three dimensions. Appl. Math. Model. 23, 667–685 (1999)CrossRefMATH Zoppou, C., Knight, J.H.: Analytical solution of a spatially variable coefficient advection–diffusion equation in up to three dimensions. Appl. Math. Model. 23, 667–685 (1999)CrossRefMATH
18.
Zurück zum Zitat Lai, M., Tseng, Y.: A fast iterative solver for the variable coefficient diffusion equation on a disk. J. Comput. Phys. 208, 196–205 (2005)MathSciNetCrossRefMATH Lai, M., Tseng, Y.: A fast iterative solver for the variable coefficient diffusion equation on a disk. J. Comput. Phys. 208, 196–205 (2005)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Zhao, X., Xu, Q.: Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient. Appl. Math. Model. 38, 3848–3859 (2014)MathSciNetCrossRef Zhao, X., Xu, Q.: Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient. Appl. Math. Model. 38, 3848–3859 (2014)MathSciNetCrossRef
20.
Zurück zum Zitat Cui, M.: Compact exponential scheme for the time fractional convection–diffusion reaction equation with variable coefficients. J. Comput. Phys. 280, 143–163 (2015)MathSciNetCrossRefMATH Cui, M.: Compact exponential scheme for the time fractional convection–diffusion reaction equation with variable coefficients. J. Comput. Phys. 280, 143–163 (2015)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Cui, M.: Combined compact difference scheme for the time fractional convection–diffusion equation with variable coefficients. Appl. Math. Comput. 246, 464–473 (2014)MathSciNetMATH Cui, M.: Combined compact difference scheme for the time fractional convection–diffusion equation with variable coefficients. Appl. Math. Comput. 246, 464–473 (2014)MathSciNetMATH
22.
Zurück zum Zitat Vong, S., Lyu, P., Wang, Z.: A compact difference scheme for fractional sub-diffusion equations with the spatially variable coefficient under Neumann boundary conditions. J. Sci. Comput. 66, 725–739 (2016)MathSciNetCrossRefMATH Vong, S., Lyu, P., Wang, Z.: A compact difference scheme for fractional sub-diffusion equations with the spatially variable coefficient under Neumann boundary conditions. J. Sci. Comput. 66, 725–739 (2016)MathSciNetCrossRefMATH
23.
24.
25.
Zurück zum Zitat Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)MathSciNetCrossRefMATH Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Gao, G.H., Sun, Z.Z., Zhang, H.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)MathSciNetCrossRefMATH Gao, G.H., Sun, Z.Z., Zhang, H.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Cao, J.X., Li, C.P., Chen, Y.Q.: High-order approximation to Caputo derivatives and Caputo-type advection–diffusion equations (II). Fract. Calc. Appl. Anal. 18, 735–761 (2015)MathSciNetCrossRefMATH Cao, J.X., Li, C.P., Chen, Y.Q.: High-order approximation to Caputo derivatives and Caputo-type advection–diffusion equations (II). Fract. Calc. Appl. Anal. 18, 735–761 (2015)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Li, C.P., Wu, R.F., Ding, H.F.: High-order approximation to Caputo derivative and Caputo-type advection–diffusion equations. Commun. Appl. Ind. Math. 6, e-536 (2015)MathSciNetMATH Li, C.P., Wu, R.F., Ding, H.F.: High-order approximation to Caputo derivative and Caputo-type advection–diffusion equations. Commun. Appl. Ind. Math. 6, e-536 (2015)MathSciNetMATH
29.
Zurück zum Zitat Li, H.F., Cao, J.X., Li, C.P.: High-order approximations to Caputo derivatives and Caputo-type advection–diffusion equations (III). J. Comput. Appl. Math. 299, 159–175 (2016)MathSciNetCrossRefMATH Li, H.F., Cao, J.X., Li, C.P.: High-order approximations to Caputo derivatives and Caputo-type advection–diffusion equations (III). J. Comput. Appl. Math. 299, 159–175 (2016)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Ji, C.C., Sun, Z.Z.: A high-order compact finite difference scheme for the fractional sub-diffusion equation. J. Sci. Comput. 64, 959–985 (2015)MathSciNetCrossRefMATH Ji, C.C., Sun, Z.Z.: A high-order compact finite difference scheme for the fractional sub-diffusion equation. J. Sci. Comput. 64, 959–985 (2015)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Ji, C.C., Sun, Z.Z.: The high-order compact numerical algorithms for the two-dimensional fractional sub-diffusion equation. Appl. Math. Comput. 269, 775–791 (2015)MathSciNet Ji, C.C., Sun, Z.Z.: The high-order compact numerical algorithms for the two-dimensional fractional sub-diffusion equation. Appl. Math. Comput. 269, 775–791 (2015)MathSciNet
32.
Zurück zum Zitat Wang, Y.-M.: A high-order compact finite difference method and its extrapolation for fractional mobile/immobile convection–diffusion equations. Calcolo 54, 733–768 (2017)MathSciNetCrossRefMATH Wang, Y.-M.: A high-order compact finite difference method and its extrapolation for fractional mobile/immobile convection–diffusion equations. Calcolo 54, 733–768 (2017)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Li, C.P., Ding, H.F.: Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl. Math. Model. 38, 3802–3821 (2014)MathSciNetCrossRef Li, C.P., Ding, H.F.: Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl. Math. Model. 38, 3802–3821 (2014)MathSciNetCrossRef
35.
Zurück zum Zitat Hao, Z.P., Lin, G., Sun, Z.Z.: A high-order difference scheme for the fractional sub-diffusion equation. Int. J. Comput. Math. 94, 405–426 (2017)MathSciNetCrossRefMATH Hao, Z.P., Lin, G., Sun, Z.Z.: A high-order difference scheme for the fractional sub-diffusion equation. Int. J. Comput. Math. 94, 405–426 (2017)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Chen, M.H., Deng, W.H.: Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 52, 1418–1438 (2014)MathSciNetCrossRefMATH Chen, M.H., Deng, W.H.: Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 52, 1418–1438 (2014)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Ding, H.F., Li, C.P.: High-order numerical algorithms for Riesz derivatives via constructing new generating functions. J. Sci. Comput. 71, 759–784 (2017)MathSciNetCrossRefMATH Ding, H.F., Li, C.P.: High-order numerical algorithms for Riesz derivatives via constructing new generating functions. J. Sci. Comput. 71, 759–784 (2017)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Ding, H.F., Li, C.P.: High-order algorithms for Riesz derivative and their applications (III). Fract. Calc. Appl. Anal. 19, 19–55 (2016)MathSciNetCrossRefMATH Ding, H.F., Li, C.P.: High-order algorithms for Riesz derivative and their applications (III). Fract. Calc. Appl. Anal. 19, 19–55 (2016)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Zeng, F., Li, C.P., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37, A55–A78 (2015)MathSciNetCrossRefMATH Zeng, F., Li, C.P., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37, A55–A78 (2015)MathSciNetCrossRefMATH
40.
Zurück zum Zitat Zeng, F.: Second-order stable finite difference schemes for the time-fractional diffusion-wave equation. J. Sci. Comput. 65, 411–430 (2014)MathSciNetCrossRefMATH Zeng, F.: Second-order stable finite difference schemes for the time-fractional diffusion-wave equation. J. Sci. Comput. 65, 411–430 (2014)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Zeng, F., Zhang, Z., Karniadakis, G.: Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations. J. Comput. Phys. 307, 15–33 (2016)MathSciNetCrossRefMATH Zeng, F., Zhang, Z., Karniadakis, G.: Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations. J. Comput. Phys. 307, 15–33 (2016)MathSciNetCrossRefMATH
42.
Zurück zum Zitat Zeng, F., Li, C.P., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35, A2976–A3000 (2013)MathSciNetCrossRefMATH Zeng, F., Li, C.P., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35, A2976–A3000 (2013)MathSciNetCrossRefMATH
43.
Zurück zum Zitat Cao, W., Zeng, F., Zhang, Z., Karniadakis, G.: Implicit–explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions. SIAM J. Sci. Comput. 38, A3070–A3093 (2016)MathSciNetCrossRefMATH Cao, W., Zeng, F., Zhang, Z., Karniadakis, G.: Implicit–explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions. SIAM J. Sci. Comput. 38, A3070–A3093 (2016)MathSciNetCrossRefMATH
44.
Zurück zum Zitat Yang, J.Y., Huang, J.F., Liang, D.M., Tang, Y.F.: Numerical solution of fractional diffusion-wave equation based on fractional multistep method. Appl. Math. Model. 38, 3652–3661 (2014)MathSciNetCrossRef Yang, J.Y., Huang, J.F., Liang, D.M., Tang, Y.F.: Numerical solution of fractional diffusion-wave equation based on fractional multistep method. Appl. Math. Model. 38, 3652–3661 (2014)MathSciNetCrossRef
45.
Zurück zum Zitat Guo, B.Y., Wang, Y.-M.: An almost monotone approximation for a nonlinear two-point boundary value problem. Adv. Comput. Math. 8, 65–96 (1998)MathSciNetCrossRefMATH Guo, B.Y., Wang, Y.-M.: An almost monotone approximation for a nonlinear two-point boundary value problem. Adv. Comput. Math. 8, 65–96 (1998)MathSciNetCrossRefMATH
46.
Zurück zum Zitat Wang, Y.-M., Guo, B.Y.: A monotone compact implicit scheme for nonlinear reaction-diffusion equations. J. Comput. Math. 26, 123–148 (2008)MathSciNetMATH Wang, Y.-M., Guo, B.Y.: A monotone compact implicit scheme for nonlinear reaction-diffusion equations. J. Comput. Math. 26, 123–148 (2008)MathSciNetMATH
47.
Zurück zum Zitat Zhao, X., Sun, Z.Z.: Compact Crank–Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium. J. Sci. Comput. 62, 747–771 (2015)MathSciNetCrossRefMATH Zhao, X., Sun, Z.Z.: Compact Crank–Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium. J. Sci. Comput. 62, 747–771 (2015)MathSciNetCrossRefMATH
48.
Zurück zum Zitat Wu, R.F., Ding, H.F., Li, C.P.: Determination of coefficients of high-order schemes for Riemann–Liouville derivative. Sci. World J. 2014, Article ID 402373, 21 pp (2014) Wu, R.F., Ding, H.F., Li, C.P.: Determination of coefficients of high-order schemes for Riemann–Liouville derivative. Sci. World J. 2014, Article ID 402373, 21 pp (2014)
49.
Zurück zum Zitat Ding, H.F.: Finite difference methods for fractional partial differential equations. Doctoral Dissertation, Shanghai University (2014) Ding, H.F.: Finite difference methods for fractional partial differential equations. Doctoral Dissertation, Shanghai University (2014)
50.
Zurück zum Zitat Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)MATH Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)MATH
51.
Zurück zum Zitat Zorich, V.A.: Mathematical Analysis II. Springer, Berlin (2004)MATH Zorich, V.A.: Mathematical Analysis II. Springer, Berlin (2004)MATH
52.
Zurück zum Zitat Li, C.P., Cai, M.: High-order approximation to Caputo derivatives and Caputo-type advection–diffusion equations: revisited. Numer. Funct. Anal. Opt. 38, 861–890 (2017)MathSciNetCrossRefMATH Li, C.P., Cai, M.: High-order approximation to Caputo derivatives and Caputo-type advection–diffusion equations: revisited. Numer. Funct. Anal. Opt. 38, 861–890 (2017)MathSciNetCrossRefMATH
54.
Zurück zum Zitat Chan, R., Jin, X.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)CrossRefMATH Chan, R., Jin, X.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)CrossRefMATH
55.
Zurück zum Zitat Samarskii, A.A.: The Theory of Difference Schemes. Marcel Dekker, Inc., New York (2001)CrossRefMATH Samarskii, A.A.: The Theory of Difference Schemes. Marcel Dekker, Inc., New York (2001)CrossRefMATH
56.
Zurück zum Zitat Dimitrov, Y.: Numerical approximations for fractional differential equations. J. Fract. Calc. Appl. 5, 1–45 (2014)MathSciNet Dimitrov, Y.: Numerical approximations for fractional differential equations. J. Fract. Calc. Appl. 5, 1–45 (2014)MathSciNet
57.
Zurück zum Zitat Gustafsson, B.: High Order Difference Methods for Time Dependent PDE. Springer, Berlin (2008)MATH Gustafsson, B.: High Order Difference Methods for Time Dependent PDE. Springer, Berlin (2008)MATH
58.
Zurück zum Zitat Isaacson, E., Keller, H.B.: Analysis of Numerical Methods. Dover Publications, Inc., New York (1994)MATH Isaacson, E., Keller, H.B.: Analysis of Numerical Methods. Dover Publications, Inc., New York (1994)MATH
59.
Zurück zum Zitat Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)CrossRefMATH Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)CrossRefMATH
Metadaten
Titel
High-Order Compact Difference Methods for Caputo-Type Variable Coefficient Fractional Sub-diffusion Equations in Conservative Form
verfasst von
Yuan-Ming Wang
Lei Ren
Publikationsdatum
22.01.2018
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2018
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0647-4

Weitere Artikel der Ausgabe 2/2018

Journal of Scientific Computing 2/2018 Zur Ausgabe