Skip to main content
Erschienen in: Acta Mechanica Sinica 3/2017

08.05.2017 | Review Paper

High-order discontinuous Galerkin method for applications to multicomponent and chemically reacting flows

verfasst von: Yu Lv, Matthias Ihme

Erschienen in: Acta Mechanica Sinica | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article focuses on the development of a discontinuous Galerkin (DG) method for simulations of multicomponent and chemically reacting flows. Compared to aerodynamic flow applications, in which DG methods have been successfully employed, DG simulations of chemically reacting flows introduce challenges that arise from flow unsteadiness, combustion, heat release, compressibility effects, shocks, and variations in thermodynamic properties. To address these challenges, algorithms are developed, including an entropy-bounded DG method, an entropy-residual shock indicator, and a new formulation of artificial viscosity. The performance and capabilities of the resulting DG method are demonstrated in several relevant applications, including shock/bubble interaction, turbulent combustion, and detonation. It is concluded that the developed DG method shows promising performance in application to multicomponent reacting flows. The paper concludes with a discussion of further research needs to enable the application of DG methods to more complex reacting flows.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zeldovich, Y.A., Raizer, Y.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, Mineola (2002) Zeldovich, Y.A., Raizer, Y.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, Mineola (2002)
2.
Zurück zum Zitat Liñán, A., Williams, F.A.: Fundamental Aspects of Combustion. Oxford University Press, Oxford (1993) Liñán, A., Williams, F.A.: Fundamental Aspects of Combustion. Oxford University Press, Oxford (1993)
3.
Zurück zum Zitat Hinze, J.O.: Turbulence, 2nd edn. McGraw-Hill, New York (1975) Hinze, J.O.: Turbulence, 2nd edn. McGraw-Hill, New York (1975)
4.
Zurück zum Zitat Lu, T., Law, C.K.: Toward accommodating realistic fuel chemistry in large-scale computations. Prog. Energy Combust. Sci. 35, 192–215 (2009)CrossRef Lu, T., Law, C.K.: Toward accommodating realistic fuel chemistry in large-scale computations. Prog. Energy Combust. Sci. 35, 192–215 (2009)CrossRef
5.
Zurück zum Zitat Ma, P.C., Lv, Y., Ihme, M.: An entropy-stable hybrid scheme for simulations of transcritical real-fluid flows. J. Comput. Phys. 340, 330–357 (2017) Ma, P.C., Lv, Y., Ihme, M.: An entropy-stable hybrid scheme for simulations of transcritical real-fluid flows. J. Comput. Phys. 340, 330–357 (2017)
7.
Zurück zum Zitat Lee, J.H.S.: The Detonation Phenomenon. Cambridge University Press, Cambridge (2008)CrossRef Lee, J.H.S.: The Detonation Phenomenon. Cambridge University Press, Cambridge (2008)CrossRef
8.
Zurück zum Zitat Shepherd, J.E.: Detonation in gases. Proc. Combust. Inst. 32, 83–98 (2009)CrossRef Shepherd, J.E.: Detonation in gases. Proc. Combust. Inst. 32, 83–98 (2009)CrossRef
9.
Zurück zum Zitat Pintgen, F., Eckett, C.A., Austin, J.M., et al.: Direct observations of reaction zone structure in propagating detonations. Combust. Flame 133, 211–229 (2003)CrossRef Pintgen, F., Eckett, C.A., Austin, J.M., et al.: Direct observations of reaction zone structure in propagating detonations. Combust. Flame 133, 211–229 (2003)CrossRef
10.
Zurück zum Zitat Maley, L., Bhattacharjee, R., Lau-Chapdelaine, S.M., et al.: Influence of hydrodynamic instabilities on the propagation mechanism of fast flames. Proc. Combust. Inst. 35, 2117–2126 (2015)CrossRef Maley, L., Bhattacharjee, R., Lau-Chapdelaine, S.M., et al.: Influence of hydrodynamic instabilities on the propagation mechanism of fast flames. Proc. Combust. Inst. 35, 2117–2126 (2015)CrossRef
11.
Zurück zum Zitat Gamezo, V.N., Desbordes, D., Oran, E.S.: Formation and evolution of two-dimensional cellular detonations. Combust. Flame 116, 154–165 (1999)CrossRef Gamezo, V.N., Desbordes, D., Oran, E.S.: Formation and evolution of two-dimensional cellular detonations. Combust. Flame 116, 154–165 (1999)CrossRef
12.
Zurück zum Zitat Hu, F.Q., Hussaini, M.Y., Rasetarinera, P.: An analysis of the discontinuous Galerkin method for wave propagation problems. J. Comput. Phys. 151, 921–946 (1999)CrossRefMATH Hu, F.Q., Hussaini, M.Y., Rasetarinera, P.: An analysis of the discontinuous Galerkin method for wave propagation problems. J. Comput. Phys. 151, 921–946 (1999)CrossRefMATH
13.
Zurück zum Zitat Lv, Y., Ihme, M.: Discontinuous Galerkin method for multicomponent chemically reacting flows and combustion. J. Comput. Phys. 270, 105–137 (2014)MathSciNetCrossRefMATH Lv, Y., Ihme, M.: Discontinuous Galerkin method for multicomponent chemically reacting flows and combustion. J. Comput. Phys. 270, 105–137 (2014)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Klöckner, A., Warburton, T., Bridge, J., et al.: Nodal discontinuous Galerkin methods on graphics processors. J. Comput. Phys. 228, 7863–7882 (2009)MathSciNetCrossRefMATH Klöckner, A., Warburton, T., Bridge, J., et al.: Nodal discontinuous Galerkin methods on graphics processors. J. Comput. Phys. 228, 7863–7882 (2009)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Los Alamos Report LA-UR-73-479, America (1973) Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Los Alamos Report LA-UR-73-479, America (1973)
16.
Zurück zum Zitat Johnson, C., Pitkäranta, J.: An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput. 46, 1–26 (1986)MathSciNetCrossRefMATH Johnson, C., Pitkäranta, J.: An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput. 46, 1–26 (1986)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Peterson, T.E.: A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal. 28, 133–140 (1991)MathSciNetCrossRefMATH Peterson, T.E.: A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal. 28, 133–140 (1991)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. J. Sci. Comp. 52, 411–435 (1989)MathSciNetMATH Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. J. Sci. Comp. 52, 411–435 (1989)MathSciNetMATH
19.
Zurück zum Zitat Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)MathSciNetCrossRefMATH Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)MathSciNetCrossRefMATH Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)MathSciNetCrossRefMATH Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Arnold, D.N., Brezzi, F., Cockburn, B., et al.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)MathSciNetCrossRefMATH Arnold, D.N., Brezzi, F., Cockburn, B., et al.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)MathSciNetCrossRefMATH Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)MathSciNetCrossRefMATH Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Bassi, F., Rebay, S.: GMRES discontinuous Galerkin solution of the compressible Navier–Stokes equations. In: Cockburn, B., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications, Springer, Berlin, 197–208 (2000) Bassi, F., Rebay, S.: GMRES discontinuous Galerkin solution of the compressible Navier–Stokes equations. In: Cockburn, B., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications, Springer, Berlin, 197–208 (2000)
26.
Zurück zum Zitat Peraire, J., Persson, P.-O.: The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput. 30, 1806–1824 (2008)MathSciNetCrossRefMATH Peraire, J., Persson, P.-O.: The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput. 30, 1806–1824 (2008)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Hartmann, R., Houston, P.: An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier–Stokes equations. J. Comput. Phys. 227, 9670–9685 (2008)MathSciNetCrossRefMATH Hartmann, R., Houston, P.: An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier–Stokes equations. J. Comput. Phys. 227, 9670–9685 (2008)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Gassner, G., Lörcher, F., Munz, C.-D.: A discontinuous Galerkin scheme based on a space-time expansion II. Viscous flow equations in multi dimensions. J. Sci. Comput. 34, 260–286 (2008)MathSciNetCrossRefMATH Gassner, G., Lörcher, F., Munz, C.-D.: A discontinuous Galerkin scheme based on a space-time expansion II. Viscous flow equations in multi dimensions. J. Sci. Comput. 34, 260–286 (2008)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (2013) Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (2013)
30.
31.
Zurück zum Zitat Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25–34 (1994)CrossRefMATH Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25–34 (1994)CrossRefMATH
32.
Zurück zum Zitat Rusanov, V.V.: Calculation of intersection of non-steady shock waves with obstacles. J. Comput. Math. Phys. USSR 1, 267–279 (1961) Rusanov, V.V.: Calculation of intersection of non-steady shock waves with obstacles. J. Comput. Math. Phys. USSR 1, 267–279 (1961)
33.
Zurück zum Zitat Ma, P.C., Lv, Y., Ihme, M.: Discontinuous Galerkin scheme for turbulent flow simulations. Annual Research Briefs, Center for Turbulence Research, 225–236 (2015) Ma, P.C., Lv, Y., Ihme, M.: Discontinuous Galerkin scheme for turbulent flow simulations. Annual Research Briefs, Center for Turbulence Research, 225–236 (2015)
34.
Zurück zum Zitat Wang, Z.J., Fidkowski, K., Abgrall, R., et al.: High-order CFD methods: current status and perspective. Int. J. Numer. Methods Fluids 72, 811–845 (2013)MathSciNetCrossRef Wang, Z.J., Fidkowski, K., Abgrall, R., et al.: High-order CFD methods: current status and perspective. Int. J. Numer. Methods Fluids 72, 811–845 (2013)MathSciNetCrossRef
35.
Zurück zum Zitat Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)MathSciNetCrossRefMATH Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Wang, C., Zhang, X., Shu, C.-W., et al.: Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. J. Comput. Phys. 231, 653–665 (2012)MathSciNetCrossRefMATH Wang, C., Zhang, X., Shu, C.-W., et al.: Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. J. Comput. Phys. 231, 653–665 (2012)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Zhang, X., Shu, C.-W.: A minimum entropy principle of high order schemes for gas dynamics equations. Numer. Math. 121, 545–563 (2012)MathSciNetCrossRefMATH Zhang, X., Shu, C.-W.: A minimum entropy principle of high order schemes for gas dynamics equations. Numer. Math. 121, 545–563 (2012)MathSciNetCrossRefMATH
38.
39.
Zurück zum Zitat Persson, P.-O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. AIAA 2006-112 (2006) Persson, P.-O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. AIAA 2006-112 (2006)
40.
Zurück zum Zitat Krivodonova, L., Xin, J., Remacle, J.-F., et al.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48, 323–338 (2004)MathSciNetCrossRefMATH Krivodonova, L., Xin, J., Remacle, J.-F., et al.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48, 323–338 (2004)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Vuik, M.J., Ryan, J.K.: Multiwavelet troubled-cell indicator for discontinuity detection of discontinuous Galerkin schemes. J. Comput. Phys. 270, 138–160 (2014)MathSciNetCrossRefMATH Vuik, M.J., Ryan, J.K.: Multiwavelet troubled-cell indicator for discontinuity detection of discontinuous Galerkin schemes. J. Comput. Phys. 270, 138–160 (2014)MathSciNetCrossRefMATH
42.
Zurück zum Zitat Lv, Y., See, Y.C., Ihme, M.: An entropy-residual shock detector for solving conservation laws using high-order discontinuous Galerkin methods. J. Comput. Phys. 322, 448–472 (2016)MathSciNetCrossRefMATH Lv, Y., See, Y.C., Ihme, M.: An entropy-residual shock detector for solving conservation laws using high-order discontinuous Galerkin methods. J. Comput. Phys. 322, 448–472 (2016)MathSciNetCrossRefMATH
44.
Zurück zum Zitat Guermond, J.-L., Pasquetti, R.: Entropy-based nonlinear viscosity for Fourier approximations of conservation laws. C. R. Acad. Sci. Paris, Ser. I 346, 801–806 (2008)MathSciNetCrossRefMATH Guermond, J.-L., Pasquetti, R.: Entropy-based nonlinear viscosity for Fourier approximations of conservation laws. C. R. Acad. Sci. Paris, Ser. I 346, 801–806 (2008)MathSciNetCrossRefMATH
45.
Zurück zum Zitat Lax, P.D.: Shock waves and entropy. In: Zarantonello E.H. (ed.) Contributions to Nonlinear Functional Analysis. Academic Press, New York and London, 603–634 (1971) Lax, P.D.: Shock waves and entropy. In: Zarantonello E.H. (ed.) Contributions to Nonlinear Functional Analysis. Academic Press, New York and London, 603–634 (1971)
47.
Zurück zum Zitat Luo, H., Baum, J.D., Löhner, R.: A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids. J. Comput. Phys. 225, 686–713 (2007)MathSciNetCrossRefMATH Luo, H., Baum, J.D., Löhner, R.: A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids. J. Comput. Phys. 225, 686–713 (2007)MathSciNetCrossRefMATH
48.
Zurück zum Zitat Zhu, J., Zhong, X., Shu, C.-W., et al.: Runge–Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes. J. Comput. Phys. 248, 200–220 (2013)MathSciNetCrossRefMATH Zhu, J., Zhong, X., Shu, C.-W., et al.: Runge–Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes. J. Comput. Phys. 248, 200–220 (2013)MathSciNetCrossRefMATH
49.
Zurück zum Zitat Hartmann, R.: Adaptive discontinuous Galerkin methods with shock-capturing for the compressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 51, 1131–1156 (2006)MathSciNetCrossRefMATH Hartmann, R.: Adaptive discontinuous Galerkin methods with shock-capturing for the compressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 51, 1131–1156 (2006)MathSciNetCrossRefMATH
50.
Zurück zum Zitat Nguyen, N.C., Persson, P.-O., Peraire, J.: RANS solutions using high order discontinuous Galerkin methods. AIAA 2007-914 (2007) Nguyen, N.C., Persson, P.-O., Peraire, J.: RANS solutions using high order discontinuous Galerkin methods. AIAA 2007-914 (2007)
51.
Zurück zum Zitat Barter, G.E., Darmofal, D.L.: Shock capturing with PDE-based artificial viscosity for DGFEM: part I formulation. J. Comput. Phys. 229, 1810–1827 (2010)MathSciNetCrossRefMATH Barter, G.E., Darmofal, D.L.: Shock capturing with PDE-based artificial viscosity for DGFEM: part I formulation. J. Comput. Phys. 229, 1810–1827 (2010)MathSciNetCrossRefMATH
52.
Zurück zum Zitat Haas, J.F., Sturtevant, B.: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 41–76 (1987)CrossRef Haas, J.F., Sturtevant, B.: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 41–76 (1987)CrossRef
53.
Zurück zum Zitat Quirk, J.J., Karni, S.: On the dynamics of a shock–bubble interaction. J. Fluid Mech. 381, 129–163 (1996) Quirk, J.J., Karni, S.: On the dynamics of a shock–bubble interaction. J. Fluid Mech. 381, 129–163 (1996)
54.
Zurück zum Zitat Johnsen, E., Colonius, T.: Implementation of WENO schemes in compressible multicomponent flows. J. Comput. Phys. 219, 715–732 (2006)MathSciNetCrossRefMATH Johnsen, E., Colonius, T.: Implementation of WENO schemes in compressible multicomponent flows. J. Comput. Phys. 219, 715–732 (2006)MathSciNetCrossRefMATH
56.
Zurück zum Zitat Sjunnesson, A., Nelsson, C., Max, E.: LDA measurements of velocities and turbulence in a bluff body stabilized flame. Laser Anemometry 3, 83–90 (1991) Sjunnesson, A., Nelsson, C., Max, E.: LDA measurements of velocities and turbulence in a bluff body stabilized flame. Laser Anemometry 3, 83–90 (1991)
57.
Zurück zum Zitat Sjunnesson, A., Olovsson, S., Sjoblom, B.: Validation rig—a tool for flame studies. In: 10th International Symposium on Air Breathing Engines. Nottingham, England, 385–393 (1991) Sjunnesson, A., Olovsson, S., Sjoblom, B.: Validation rig—a tool for flame studies. In: 10th International Symposium on Air Breathing Engines. Nottingham, England, 385–393 (1991)
58.
Zurück zum Zitat Ghani, A., Poinsot, T., Gicquel, L., et al.: LES of longitudinal and transverse self-excited combustion instabilities in a bluff-body stabilized turbulent premixed flame. Combust. Flame 162, 4075–4083 (2015)CrossRef Ghani, A., Poinsot, T., Gicquel, L., et al.: LES of longitudinal and transverse self-excited combustion instabilities in a bluff-body stabilized turbulent premixed flame. Combust. Flame 162, 4075–4083 (2015)CrossRef
59.
Zurück zum Zitat Gamezo, V.N., Desbords, D., Oran, E.S.: Two-dimensional reactive flow dynamics in cellular detonation. Shock Waves 9, 11–17 (1999)CrossRef Gamezo, V.N., Desbords, D., Oran, E.S.: Two-dimensional reactive flow dynamics in cellular detonation. Shock Waves 9, 11–17 (1999)CrossRef
60.
Zurück zum Zitat Ohyagi, S., Obara, T., Hoshi, S., et al.: Diffraction and re-initiation of detonations behind a backward-facing step. Shock Waves 12, 221–226 (2002)CrossRef Ohyagi, S., Obara, T., Hoshi, S., et al.: Diffraction and re-initiation of detonations behind a backward-facing step. Shock Waves 12, 221–226 (2002)CrossRef
61.
Zurück zum Zitat Burke, M.P., Chaos, M., Ju, Y., et al.: Comprehensive H\(_2\)/O\(_2\) kinetic model for high-pressure combustion. Int. J. Chem. Kinet. 44, 444–474 (2012)CrossRef Burke, M.P., Chaos, M., Ju, Y., et al.: Comprehensive H\(_2\)/O\(_2\) kinetic model for high-pressure combustion. Int. J. Chem. Kinet. 44, 444–474 (2012)CrossRef
62.
Zurück zum Zitat Lv, Y., Ihme, M.: Computational analysis of re-ignition and re-initiation mechanisms of quenched detonation waves behind a backward facing step. Proc. Combust. Inst. 35, 1963–1972 (2015)CrossRef Lv, Y., Ihme, M.: Computational analysis of re-ignition and re-initiation mechanisms of quenched detonation waves behind a backward facing step. Proc. Combust. Inst. 35, 1963–1972 (2015)CrossRef
63.
Zurück zum Zitat de Wiart, Carton C., Hillewaert, K., et al.: Implicit LES of free and wall-bounded turbulent flows based on the discontinuous Galerkin/symmetric interior penalty method. Int. J. Numer. Methods Fluids 78, 335–354 (2015) de Wiart, Carton C., Hillewaert, K., et al.: Implicit LES of free and wall-bounded turbulent flows based on the discontinuous Galerkin/symmetric interior penalty method. Int. J. Numer. Methods Fluids 78, 335–354 (2015)
64.
Zurück zum Zitat Kanner, S., Persson, P.-O.: Validation of a high-order large-eddy simulation solver using a vertical-axis wind turbine. AIAA J. 54, 101–112 (2015)CrossRef Kanner, S., Persson, P.-O.: Validation of a high-order large-eddy simulation solver using a vertical-axis wind turbine. AIAA J. 54, 101–112 (2015)CrossRef
65.
Zurück zum Zitat Beck, A.D., Bolemann, T., Flad, D., et al.: High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations. Int. J. Numer. Methods Fluids 76, 522–548 (2014)MathSciNetCrossRef Beck, A.D., Bolemann, T., Flad, D., et al.: High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations. Int. J. Numer. Methods Fluids 76, 522–548 (2014)MathSciNetCrossRef
66.
Zurück zum Zitat Gassner, G.J., Beck, A.D.: On the accuracy of high-order discretizations for underresolved turbulence simulations. Theor. Comput. Fluid Dyn. 27, 221–237 (2013)CrossRef Gassner, G.J., Beck, A.D.: On the accuracy of high-order discretizations for underresolved turbulence simulations. Theor. Comput. Fluid Dyn. 27, 221–237 (2013)CrossRef
Metadaten
Titel
High-order discontinuous Galerkin method for applications to multicomponent and chemically reacting flows
verfasst von
Yu Lv
Matthias Ihme
Publikationsdatum
08.05.2017
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 3/2017
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-017-0664-9

Weitere Artikel der Ausgabe 3/2017

Acta Mechanica Sinica 3/2017 Zur Ausgabe

Preface

Preface

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.