Skip to main content
Erschienen in: Autonomous Robots 7/2020

21.07.2020

High precision control and deep learning-based corn stand counting algorithms for agricultural robot

verfasst von: Zhongzhong Zhang, Erkan Kayacan, Benjamin Thompson, Girish Chowdhary

Erschienen in: Autonomous Robots | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents high precision control and deep learning-based corn stand counting algorithms for a low-cost, ultra-compact 3D printed and autonomous field robot for agricultural operations. Currently, plant traits, such as emergence rate, biomass, vigor, and stand counting, are measured manually. This is highly labor-intensive and prone to errors. The robot, termed TerraSentia, is designed to automate the measurement of plant traits for efficient phenotyping as an alternative to manual measurements. In this paper, we formulate a Nonlinear Moving Horizon Estimator that identifies key terrain parameters using onboard robot sensors and a learning-based Nonlinear Model Predictive Control that ensures high precision path tracking in the presence of unknown wheel-terrain interaction. Moreover, we develop a machine vision algorithm designed to enable an ultra-compact ground robot to count corn stands by driving through the fields autonomously. The algorithm leverages a deep network to detect corn plants in images, and a visual tracking model to re-identify detected objects at different time steps. We collected data from 53 corn plots in various fields for corn plants around 14 days after emergence (stage V3 - V4). The robot predictions have agreed well with the ground truth with \(C_{robot}=1.02 \times C_{human}-0.86\) and a correlation coefficient \(R=0.96\). The mean relative error given by the algorithm is \(-3.78\%\), and the standard deviation is \(6.76\%\). These results indicate a first and significant step towards autonomous robot-based real-time phenotyping using low-cost, ultra-compact ground robots for corn and potentially other crops.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abendroth, L.J., Elmore, R.W., Boyer, M.J., & Marlay, S.K. (2011). Corn growth and development. PMR 1009. Iowa State University Abendroth, L.J., Elmore, R.W., Boyer, M.J., & Marlay, S.K. (2011). Corn growth and development. PMR 1009. Iowa State University
Zurück zum Zitat Araus, J. L., & Cairns, J. E. (2014). Field high-throughput phenotyping: The new crop breeding frontier. Trends in Plant Science, 19(1), 52–61.CrossRef Araus, J. L., & Cairns, J. E. (2014). Field high-throughput phenotyping: The new crop breeding frontier. Trends in Plant Science, 19(1), 52–61.CrossRef
Zurück zum Zitat Biber, P., Weiss, U., Dorna, M., & Albert, A. (2012). Navigation system of the autonomous agricultural robot bonirob. In Workshop on Agricultural Robotics: Enabling Safe, Efficient, and Affordable Robots for Food Production (Collocated with IROS 2012), Vilamoura, Portugal Biber, P., Weiss, U., Dorna, M., & Albert, A. (2012). Navigation system of the autonomous agricultural robot bonirob. In Workshop on Agricultural Robotics: Enabling Safe, Efficient, and Affordable Robots for Food Production (Collocated with IROS 2012), Vilamoura, Portugal
Zurück zum Zitat Chen, S. W., Shivakumar, S. S., Dcunha, S., Das, J., Okon, E., Qu, C., et al. (2017). Counting apples and oranges with deep learning: A data-driven approach. IEEE Robotics and Automation Letters, 2(2), 781–788.CrossRef Chen, S. W., Shivakumar, S. S., Dcunha, S., Das, J., Okon, E., Qu, C., et al. (2017). Counting apples and oranges with deep learning: A data-driven approach. IEEE Robotics and Automation Letters, 2(2), 781–788.CrossRef
Zurück zum Zitat Das, J., Cross, G., Qu, C., Makineni, A., Tokekar, P., Mulgaonkar, Y., & Kumar, V. (2015). Devices, systems, and methods for automated monitoring enabling precision agriculture. In 2015 IEEE International Conference on Automation Science and Engineering (CASE), IEEE, (pp. 462–469). Das, J., Cross, G., Qu, C., Makineni, A., Tokekar, P., Mulgaonkar, Y., & Kumar, V. (2015). Devices, systems, and methods for automated monitoring enabling precision agriculture. In 2015 IEEE International Conference on Automation Science and Engineering (CASE), IEEE, (pp. 462–469).
Zurück zum Zitat Diehl, M., Bock, H., Schölder, J. P., Findeisen, R., Nagy, Z., & Allgöwer, F. (2002). Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. Journal of Process Control, 12(4), 577–585.CrossRef Diehl, M., Bock, H., Schölder, J. P., Findeisen, R., Nagy, Z., & Allgöwer, F. (2002). Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. Journal of Process Control, 12(4), 577–585.CrossRef
Zurück zum Zitat Ferreau, H., Kraus, T., Vukov, M., Saeys, W., Diehl, M. (2012) High-speed moving horizon estimation based on automatic code generation. In Decision and Control (CDC), 2012 IEEE 51st Annual Conference on (pp. 687–692). Ferreau, H., Kraus, T., Vukov, M., Saeys, W., Diehl, M. (2012) High-speed moving horizon estimation based on automatic code generation. In Decision and Control (CDC), 2012 IEEE 51st Annual Conference on (pp. 687–692).
Zurück zum Zitat Furbank, R. T., & Tester, M. (2011). Phenomics-technologies to relieve the phenotyping bottleneck. Trends in plant science, 16(12), 635–644.CrossRef Furbank, R. T., & Tester, M. (2011). Phenomics-technologies to relieve the phenotyping bottleneck. Trends in plant science, 16(12), 635–644.CrossRef
Zurück zum Zitat Halstead, M., McCool, C., Denman, S., Perez, T., & Fookes, C. (2018). Fruit quantity and quality estimation using a robotic vision system. arXiv preprint arXiv:1801.05560 Halstead, M., McCool, C., Denman, S., Perez, T., & Fookes, C. (2018). Fruit quantity and quality estimation using a robotic vision system. arXiv preprint arXiv:​1801.​05560
Zurück zum Zitat He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp 770–778). He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp 770–778).
Zurück zum Zitat He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017) Mask r-cnn. In Computer Vision (ICCV), 2017 IEEE International Conference on, IEEE (pp. 2980–2988). He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017) Mask r-cnn. In Computer Vision (ICCV), 2017 IEEE International Conference on, IEEE (pp. 2980–2988).
Zurück zum Zitat Henriques, J. F., Caseiro, R., Martins, P., & Batista, J. (2015). High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(3), 583–596.CrossRef Henriques, J. F., Caseiro, R., Martins, P., & Batista, J. (2015). High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(3), 583–596.CrossRef
Zurück zum Zitat van Henten, E. J., Goense, D., & Lokhorst, C. (2009). Precision agriculture. The Netherlands: Wageningen Academic Publishers.CrossRef van Henten, E. J., Goense, D., & Lokhorst, C. (2009). Precision agriculture. The Netherlands: Wageningen Academic Publishers.CrossRef
Zurück zum Zitat Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z., Song, Y., & Guadarrama, S, et al. (2017) Speed/accuracy trade-offs for modern convolutional object detectors. In IEEE CVPR, vol 4. Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z., Song, Y., & Guadarrama, S, et al. (2017) Speed/accuracy trade-offs for modern convolutional object detectors. In IEEE CVPR, vol 4.
Zurück zum Zitat Kayacan, E., & Chowdhary, G. (2019). Tracking error learning control for precise mobile robot path tracking in outdoor environment. Journal of Intelligent and Robotic Systems, 95(3–4), 975–986.CrossRef Kayacan, E., & Chowdhary, G. (2019). Tracking error learning control for precise mobile robot path tracking in outdoor environment. Journal of Intelligent and Robotic Systems, 95(3–4), 975–986.CrossRef
Zurück zum Zitat Kayacan, E., Kayacan, E., Ramon, H., & Saeys, W. (2013) Modeling and identification of the yaw dynamics of an autonomous tractor. In 2013 9th Asian Control Conference (ASCC) (pp. 1–6). Kayacan, E., Kayacan, E., Ramon, H., & Saeys, W. (2013) Modeling and identification of the yaw dynamics of an autonomous tractor. In 2013 9th Asian Control Conference (ASCC) (pp. 1–6).
Zurück zum Zitat Kayacan, E., Peschel, J.M., & Kayacan, E. (2016). Centralized, decentralized and distributed nonlinear model predictive control of a tractor-trailer system: A comparative study. In 2016 American Control Conference (ACC) (pp. 4403–4408), https://doi.org/10.1109/ACC.2016.7525615 Kayacan, E., Peschel, J.M., & Kayacan, E. (2016). Centralized, decentralized and distributed nonlinear model predictive control of a tractor-trailer system: A comparative study. In 2016 American Control Conference (ACC) (pp. 4403–4408), https://​doi.​org/​10.​1109/​ACC.​2016.​7525615
Zurück zum Zitat Kayacan, E., Kayacan, E., Chen, I. M., Ramon, H., & Saeys, W. (2018a). On the Comparison of Model-Based and Model-Free Controllers in Guidance (pp. 49–73). Navigation and Control of Agricultural Vehicles: Springer International Publishing, Cham. Kayacan, E., Kayacan, E., Chen, I. M., Ramon, H., & Saeys, W. (2018a). On the Comparison of Model-Based and Model-Free Controllers in Guidance (pp. 49–73). Navigation and Control of Agricultural Vehicles: Springer International Publishing, Cham.
Zurück zum Zitat Kayacan, E., Saeys, W., Ramon, H., Belta, C., & Peschel, J. M. (2018b). Experimental validation of linear and nonlinear mpc on an articulated unmanned ground vehicle. IEEE/ASME Transactions on Mechatronics, 23(5), 2023–2030.CrossRef Kayacan, E., Saeys, W., Ramon, H., Belta, C., & Peschel, J. M. (2018b). Experimental validation of linear and nonlinear mpc on an articulated unmanned ground vehicle. IEEE/ASME Transactions on Mechatronics, 23(5), 2023–2030.CrossRef
Zurück zum Zitat Kayacan, E., Young, S. N., Peschel, J. M., & Chowdhary, G. (2018c). High-precision control of tracked field robots in the presence of unknown traction coefficients. Journal of Field Robotics, 35(7), 1050–1062.CrossRef Kayacan, E., Young, S. N., Peschel, J. M., & Chowdhary, G. (2018c). High-precision control of tracked field robots in the presence of unknown traction coefficients. Journal of Field Robotics, 35(7), 1050–1062.CrossRef
Zurück zum Zitat Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097–1105). Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097–1105).
Zurück zum Zitat Lee, S.U., Iagnemma, K. (2016). Robust motion planning methodology for autonomous tracked vehicles in rough environment using online slip estimation. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (pp. 3589–3594), https://doi.org/10.1109/IROS.2016.7759528 Lee, S.U., Iagnemma, K. (2016). Robust motion planning methodology for autonomous tracked vehicles in rough environment using online slip estimation. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (pp. 3589–3594), https://​doi.​org/​10.​1109/​IROS.​2016.​7759528
Zurück zum Zitat Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C.L. (2014). Microsoft coco: Common objects in context. In European conference on computer vision (pp. 740–755). Springer Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C.L. (2014). Microsoft coco: Common objects in context. In European conference on computer vision (pp. 740–755). Springer
Zurück zum Zitat Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., & Berg, A.C. (2015). Ssd: Single shot multibox detector. arXiv preprint arXiv:1512.02325 Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., & Berg, A.C. (2015). Ssd: Single shot multibox detector. arXiv preprint arXiv:​1512.​02325
Zurück zum Zitat Liu, X., Chen, S.W., Aditya, S., Sivakumar, N., Dcunha, S., Qu, C., Taylor, C.J., Das, J., Kumar, V. (2018). Robust fruit counting: Combining deep learning, tracking, and structure from motion. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE (pp. 1045–1052) Liu, X., Chen, S.W., Aditya, S., Sivakumar, N., Dcunha, S., Qu, C., Taylor, C.J., Das, J., Kumar, V. (2018). Robust fruit counting: Combining deep learning, tracking, and structure from motion. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE (pp. 1045–1052)
Zurück zum Zitat Liu, X., Chen, S. W., Liu, C., Shivakumar, S. S., Das, J., Taylor, C. J., et al. (2019). Monocular camera based fruit counting and mapping with semantic data association. IEEE Robotics and Automation Letters, 4(3), 2296–2303.CrossRef Liu, X., Chen, S. W., Liu, C., Shivakumar, S. S., Das, J., Taylor, C. J., et al. (2019). Monocular camera based fruit counting and mapping with semantic data association. IEEE Robotics and Automation Letters, 4(3), 2296–2303.CrossRef
Zurück zum Zitat Long, J., Shelhamer, E., & Darrell, T. (2015) Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp 3431–3440) Long, J., Shelhamer, E., & Darrell, T. (2015) Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp 3431–3440)
Zurück zum Zitat Lu, H., Cao, Z., Xiao, Y., Zhuang, B., & Shen, C. (2017). Tasselnet: Counting maize tassels in the wild via local counts regression network. Plant methods, 13(1), 79.CrossRef Lu, H., Cao, Z., Xiao, Y., Zhuang, B., & Shen, C. (2017). Tasselnet: Counting maize tassels in the wild via local counts regression network. Plant methods, 13(1), 79.CrossRef
Zurück zum Zitat Mayne, D., Rawlings, J., Rao, C., & Scokaert, P. (2000). Constrained model predictive control: Stability and optimality. Automatica, 36(6), 789–814.MathSciNetCrossRef Mayne, D., Rawlings, J., Rao, C., & Scokaert, P. (2000). Constrained model predictive control: Stability and optimality. Automatica, 36(6), 789–814.MathSciNetCrossRef
Zurück zum Zitat Mehndiratta, M., Kayacan, E., Patel, S., Kayacan, E., & Chowdhary, G. (2019). Learning-Based fast nonlinear model predictive control for custom-made 3D printed ground and aerial robots (pp. 581–605). Cham: Springer. Mehndiratta, M., Kayacan, E., Patel, S., Kayacan, E., & Chowdhary, G. (2019). Learning-Based fast nonlinear model predictive control for custom-made 3D printed ground and aerial robots (pp. 581–605). Cham: Springer.
Zurück zum Zitat Rahnemoonfar, M., & Sheppard, C. (2017). Deep count: Fruit counting based on deep simulated learning. Sensors, 17(4), 905.CrossRef Rahnemoonfar, M., & Sheppard, C. (2017). Deep count: Fruit counting based on deep simulated learning. Sensors, 17(4), 905.CrossRef
Zurück zum Zitat Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems(pp. 91–99) Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems(pp. 91–99)
Zurück zum Zitat Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:​1409.​1556
Zurück zum Zitat Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1–9) Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1–9)
Zurück zum Zitat Young, S. N., Kayacan, E., & Peschel, J. M. (2019). Design and field evaluation of a ground robot for high-throughput phenotyping of energy sorghum. Precision Agriculture, 20(4), 697–722.CrossRef Young, S. N., Kayacan, E., & Peschel, J. M. (2019). Design and field evaluation of a ground robot for high-throughput phenotyping of energy sorghum. Precision Agriculture, 20(4), 697–722.CrossRef
Metadaten
Titel
High precision control and deep learning-based corn stand counting algorithms for agricultural robot
verfasst von
Zhongzhong Zhang
Erkan Kayacan
Benjamin Thompson
Girish Chowdhary
Publikationsdatum
21.07.2020
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 7/2020
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-020-09915-y

Weitere Artikel der Ausgabe 7/2020

Autonomous Robots 7/2020 Zur Ausgabe

Neuer Inhalt