Skip to main content
Erschienen in:

06.06.2024

High-Precision Direction of Arrival Estimation Based on LightGBM

verfasst von: Fuwei Wang, Xiaoyu Zhang, Lu Liu, Chen Chen, Xingrui He, Yan Zhou

Erschienen in: Circuits, Systems, and Signal Processing | Ausgabe 9/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Machine learning-based direction-of-arrival (DOA) estimation methods can have a good predictive ability even in complex scenarios. However, their estimation performance in the face of unknown data is poor because they rely on the generalization ability of the algorithm itself. Therefore, this paper proposes a DOA estimation method based on the Light Gradient Boosting Machine (LightGBM) algorithm. Using the histogram algorithm, gradient-based one-sided sampling and exclusive feature bundling measures, the LightGBM algorithm can reduce the time to find the best segmentation point, reduce the amount of data and the number of features in the dataset, thus reducing the model training time, and achieve high prediction accuracy. Applying the LightGBM algorithm to the DOA estimation problem and using a large dataset for training can improve the estimation accuracy while reducing the training cost. Simulation and real experimental results verify the effectiveness of the method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat A.H. El Zooghby, C.G. Christodoulou, M. Georgiopoulos, A neural network-based smart antenna for multiple source tracking. IEEE Trans. Antennas Propag. 48(5), 768–776 (2000)CrossRef A.H. El Zooghby, C.G. Christodoulou, M. Georgiopoulos, A neural network-based smart antenna for multiple source tracking. IEEE Trans. Antennas Propag. 48(5), 768–776 (2000)CrossRef
2.
Zurück zum Zitat A. Faye, M. Sene, J. Ndaw, RSS-Based improved DOA estimation using SVM, in 2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET) (2021), pp. 125–130 A. Faye, M. Sene, J. Ndaw, RSS-Based improved DOA estimation using SVM, in 2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET) (2021), pp. 125–130
3.
Zurück zum Zitat C. Feng, J. Xiong, L. Chang, et al., WiMi: Target material identification with commodity Wi-Fi devices, in 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS) (2019), pp. 700–710 C. Feng, J. Xiong, L. Chang, et al., WiMi: Target material identification with commodity Wi-Fi devices, in 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS) (2019), pp. 700–710
4.
Zurück zum Zitat H. Huang, G. Gui, H. Sari, et al., Deep learning for super-resolution DOA estimation in massive MIMO systems, in 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall) (2018), pp. 1–5 H. Huang, G. Gui, H. Sari, et al., Deep learning for super-resolution DOA estimation in massive MIMO systems, in 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall) (2018), pp. 1–5
5.
Zurück zum Zitat Y. Kase, T. Nishimura, T. Ohgane et al., Fundamental trial on DOA estimation with deep learning. IEICE Trans. Commun. 103(10), 1127–1135 (2020)CrossRef Y. Kase, T. Nishimura, T. Ohgane et al., Fundamental trial on DOA estimation with deep learning. IEICE Trans. Commun. 103(10), 1127–1135 (2020)CrossRef
6.
Zurück zum Zitat G. Ke, Q. Meng, T. Finley, et al., Lightgbm: a highly efficient gradient boosting decision tree, in Advances in Neural Information Processing Systems vol. 30 (2017) G. Ke, Q. Meng, T. Finley, et al., Lightgbm: a highly efficient gradient boosting decision tree, in Advances in Neural Information Processing Systems vol. 30 (2017)
7.
Zurück zum Zitat G. Liang, C. Li, L. Qiu et al., State-updating-based DOA estimation using sparse Bayesian learning. Appl. Acoust. 192, 108719 (2022)CrossRef G. Liang, C. Li, L. Qiu et al., State-updating-based DOA estimation using sparse Bayesian learning. Appl. Acoust. 192, 108719 (2022)CrossRef
8.
Zurück zum Zitat Z. Liu, C. Zhang, S.Y. Philip, Direction-of-arrival estimation based on deep neural networks with robustness to array imperfections. IEEE Trans. Antennas Propag. 66(12), 7315–7327 (2018)CrossRef Z. Liu, C. Zhang, S.Y. Philip, Direction-of-arrival estimation based on deep neural networks with robustness to array imperfections. IEEE Trans. Antennas Propag. 66(12), 7315–7327 (2018)CrossRef
9.
Zurück zum Zitat M. Pastorino, A. Randazzo, A smart antenna system for direction of arrival estimation based on a support vector regression. IEEE Trans. Antennas Propag. 53(7), 2161–2168 (2005)CrossRef M. Pastorino, A. Randazzo, A smart antenna system for direction of arrival estimation based on a support vector regression. IEEE Trans. Antennas Propag. 53(7), 2161–2168 (2005)CrossRef
10.
Zurück zum Zitat J. Quinonero-Candela, M. Sugiyama, A. Schwaighofer et al., Dataset Shift in Machine Learning (Mit Press, New York, 2008)CrossRef J. Quinonero-Candela, M. Sugiyama, A. Schwaighofer et al., Dataset Shift in Machine Learning (Mit Press, New York, 2008)CrossRef
11.
Zurück zum Zitat A. Randazzo, M.A. Abou-Khousa, M. Pastorino et al., Direction of arrival estimation based on support vector regression: experimental validation and comparison with MUSIC. IEEE Antennas Wirel. Propag. Lett. 6, 379–382 (2007)CrossRef A. Randazzo, M.A. Abou-Khousa, M. Pastorino et al., Direction of arrival estimation based on support vector regression: experimental validation and comparison with MUSIC. IEEE Antennas Wirel. Propag. Lett. 6, 379–382 (2007)CrossRef
12.
Zurück zum Zitat R. Roy, A. Paulraj, T. Kailath, ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Trans. Acoust. Speech Signal Process. 34(5), 1340–1342 (1986)CrossRef R. Roy, A. Paulraj, T. Kailath, ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Trans. Acoust. Speech Signal Process. 34(5), 1340–1342 (1986)CrossRef
13.
Zurück zum Zitat R. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)MathSciNetCrossRef R. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)MathSciNetCrossRef
14.
Zurück zum Zitat P. Stoica, A. Nehorai, MUSIC, maximum likelihood, and Cramer-Rao bound: further results and comparisons. IEEE Trans. Acoust. Speech Signal Process. 38(12), 2140–2150 (1990)CrossRef P. Stoica, A. Nehorai, MUSIC, maximum likelihood, and Cramer-Rao bound: further results and comparisons. IEEE Trans. Acoust. Speech Signal Process. 38(12), 2140–2150 (1990)CrossRef
15.
Zurück zum Zitat M. Sugiyama, M. Kawanabe, Machine Learning in Non-stationary Environments: Introduction to Covariate Shift Adaptation (MIT Press, New York, 2012)CrossRef M. Sugiyama, M. Kawanabe, Machine Learning in Non-stationary Environments: Introduction to Covariate Shift Adaptation (MIT Press, New York, 2012)CrossRef
16.
Zurück zum Zitat X. Xiao, S. Zhao, X. Zhong, et al., A learning-based approach to direction of arrival estimation in noisy and reverberant environments, in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2015), pp. 2814–2818 X. Xiao, S. Zhao, X. Zhong, et al., A learning-based approach to direction of arrival estimation in noisy and reverberant environments, in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2015), pp. 2814–2818
17.
Zurück zum Zitat H. Zheng, C. Zhou, Y. Gu, et al., Two-dimensional DOA estimation for coprime planar array: A coarray tensor-based solution, in ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2020), pp. 4562–4566 H. Zheng, C. Zhou, Y. Gu, et al., Two-dimensional DOA estimation for coprime planar array: A coarray tensor-based solution, in ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2020), pp. 4562–4566
Metadaten
Titel
High-Precision Direction of Arrival Estimation Based on LightGBM
verfasst von
Fuwei Wang
Xiaoyu Zhang
Lu Liu
Chen Chen
Xingrui He
Yan Zhou
Publikationsdatum
06.06.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing / Ausgabe 9/2024
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02706-1