Skip to main content
Erschienen in: Wireless Personal Communications 2/2019

04.04.2019

High Precision Low-Voltage WTA/LTA Circuit for Signal Processing Applications

verfasst von: Rishikesh Pandey, Sahib Singh

Erschienen in: Wireless Personal Communications | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper proposes low-voltage current mode winner takes all (WTA)/loser takes all (LTA) circuit which detects maximum and minimum values from the given current inputs simultaneously. The circuit is developed using high swing self-biased cascode current mirror and a subtractor circuit. The cascode current mirror is used to improve the accuracy of current mirroring action over a wide input current range and subtractor circuit is used to compute the difference of two input currents. The proposed circuit operates at supply voltage of 1.1 V with high precision. The output current is mirrored with transfer error of 0.03% while input current is varying from 0 to 40 μA. Simulations have been performed using SPICE level 53 (TSMC) parameters in 0.18 μm CMOS technology. Some of the applications of the proposed WTA/LTA circuit such as half wave rectifier, full wave rectifier and modulus circuit have also been presented to show the effectiveness of the proposed circuit.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yosefi, G., Aminifar, S., Neda, Sh, & Daneshwar, M. A. (2011). Design of a mixed-signal digital CMOS fuzzy logic controller (FLC) chip using new current mode circuits. AEU-International Journal of Electronic and Communications, 65, 173–181.CrossRef Yosefi, G., Aminifar, S., Neda, Sh, & Daneshwar, M. A. (2011). Design of a mixed-signal digital CMOS fuzzy logic controller (FLC) chip using new current mode circuits. AEU-International Journal of Electronic and Communications, 65, 173–181.CrossRef
2.
Zurück zum Zitat Mesgarzadeh, B. (2004). A CMOS implementation of current-mode min max circuits and a sample fuzzy application. In IEEE international conference on fuzzy systems, Sweden (pp. 941–946). Mesgarzadeh, B. (2004). A CMOS implementation of current-mode min max circuits and a sample fuzzy application. In IEEE international conference on fuzzy systems, Sweden (pp. 941–946).
3.
Zurück zum Zitat Ramirez-Angulo, J., Ducoudray-Acevedo, G., Carvajal, R. G., & Lopez-Martin, A. (2005). Low-voltage high-performance voltage- mode and current-mode WTA circuits based on flipped voltage followers. IEEE Transactions on Circuits and Systems II: Express Briefs, 52, 420–423.CrossRef Ramirez-Angulo, J., Ducoudray-Acevedo, G., Carvajal, R. G., & Lopez-Martin, A. (2005). Low-voltage high-performance voltage- mode and current-mode WTA circuits based on flipped voltage followers. IEEE Transactions on Circuits and Systems II: Express Briefs, 52, 420–423.CrossRef
4.
Zurück zum Zitat Demosthenous, A., Smedley, S., & Taylor, J. (1998). A CMOS analog winner take-all network for large-scale applications. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Application, 45, 300–304.CrossRef Demosthenous, A., Smedley, S., & Taylor, J. (1998). A CMOS analog winner take-all network for large-scale applications. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Application, 45, 300–304.CrossRef
5.
Zurück zum Zitat Prommee, P., & Chattrakun, K. (2011). CMOS WTA maximum and minimum circuits with their applications to analog switch and rectifiers. Microelectronics Journal, 42, 52–62.CrossRef Prommee, P., & Chattrakun, K. (2011). CMOS WTA maximum and minimum circuits with their applications to analog switch and rectifiers. Microelectronics Journal, 42, 52–62.CrossRef
6.
Zurück zum Zitat Moaiyeri, M. H., Chavoshisani, R., Jalali, A., Navi, K., & Hashemipou, O. (2012). High-performance mixed-mode universal min-max circuits for nanotechnology. Journal of Circuits System and Signal Processing, 31, 465–488.MathSciNetCrossRef Moaiyeri, M. H., Chavoshisani, R., Jalali, A., Navi, K., & Hashemipou, O. (2012). High-performance mixed-mode universal min-max circuits for nanotechnology. Journal of Circuits System and Signal Processing, 31, 465–488.MathSciNetCrossRef
7.
Zurück zum Zitat Anderson, J. D. W., Carver, A., Allen, T. P., & Wall, M. F. (1992). CMOS winner-take all circuit with offset adaptation. US Patent 5146106 A. Anderson, J. D. W., Carver, A., Allen, T. P., & Wall, M. F. (1992). CMOS winner-take all circuit with offset adaptation. US Patent 5146106 A.
8.
Zurück zum Zitat Opris, I. E. (1998). Rail-to-rail multiple-input min/max circuit. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 45, 137–140.CrossRef Opris, I. E. (1998). Rail-to-rail multiple-input min/max circuit. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 45, 137–140.CrossRef
9.
Zurück zum Zitat Carvajal, R. J., Lopez-Martin, A., Torralba, A., Galan, J. A. G., Carlosena, A., & Chavero, F. M. (2005). The flipped voltage follower: A useful cell for low voltage low power circuit design. IEEE Transactions on Circuits and Systems I, 52, 1276–1291.CrossRef Carvajal, R. J., Lopez-Martin, A., Torralba, A., Galan, J. A. G., Carlosena, A., & Chavero, F. M. (2005). The flipped voltage follower: A useful cell for low voltage low power circuit design. IEEE Transactions on Circuits and Systems I, 52, 1276–1291.CrossRef
10.
Zurück zum Zitat Kazeminia, S., Khoei, A., & Hadidi, K. (2007). High speed high precision voltage mode max and min circuits. Journal of Circuits, Systems and Computers, 16, 233–244.CrossRef Kazeminia, S., Khoei, A., & Hadidi, K. (2007). High speed high precision voltage mode max and min circuits. Journal of Circuits, Systems and Computers, 16, 233–244.CrossRef
12.
Zurück zum Zitat Serrano, T., & Linares-Barranco, B. (1995). A modular current-mode high-precision winner-take-all circuit. IEEE Transactions on Circuits and Systems-II, 42, 132–134.CrossRef Serrano, T., & Linares-Barranco, B. (1995). A modular current-mode high-precision winner-take-all circuit. IEEE Transactions on Circuits and Systems-II, 42, 132–134.CrossRef
13.
Zurück zum Zitat Fish, A., Milrud, V., & Yadid-Pecht, O. (2005). High-speed and high-precision current winner-take-all circuit. IEEE Transactions on Circuits and Systems-II, 52, 131–135.CrossRef Fish, A., Milrud, V., & Yadid-Pecht, O. (2005). High-speed and high-precision current winner-take-all circuit. IEEE Transactions on Circuits and Systems-II, 52, 131–135.CrossRef
14.
Zurück zum Zitat Peymanfar, A., Khoei, A., & Hadidi, K. (2009). Design of a general propose neuro-fuzzy controller by using modified adaptive-network-based fuzzy inference system. AEU-International Journal of Electronic and Communications, 64, 433–442.CrossRef Peymanfar, A., Khoei, A., & Hadidi, K. (2009). Design of a general propose neuro-fuzzy controller by using modified adaptive-network-based fuzzy inference system. AEU-International Journal of Electronic and Communications, 64, 433–442.CrossRef
15.
Zurück zum Zitat Rahman, M., Baishnab, K. L., & Talukdar, F. A. (2009). A high speed and high resolution VLSI winner take-all circuit for neural networks and fuzzy systems. In International symposium on signals, circuits and systems, Lasi (pp. 1–4). Rahman, M., Baishnab, K. L., & Talukdar, F. A. (2009). A high speed and high resolution VLSI winner take-all circuit for neural networks and fuzzy systems. In International symposium on signals, circuits and systems, Lasi (pp. 1–4).
16.
Zurück zum Zitat Alikhani, A., & Ahmadi, A. (2012). A novel current-mode min–max circuit. Analog Integrated Circuits and Signal Processing, 72, 343–350.CrossRef Alikhani, A., & Ahmadi, A. (2012). A novel current-mode min–max circuit. Analog Integrated Circuits and Signal Processing, 72, 343–350.CrossRef
17.
Zurück zum Zitat Abdulla, K. P., & Azeem, M. F. (2013). A CMOS current mode implementation of multiple input fuzzy min and max circuits for analog fuzzy processors. International Journal of Scientific & Engineering Research, 4, 928–933. Abdulla, K. P., & Azeem, M. F. (2013). A CMOS current mode implementation of multiple input fuzzy min and max circuits for analog fuzzy processors. International Journal of Scientific & Engineering Research, 4, 928–933.
18.
Zurück zum Zitat Ghanavati, B., & Moghaddam, E. T. (2014). Low-voltage current-mode WTA/LTA circuit. Universal Journal of Electrical and Electronic Engineering, 2, 161–164.CrossRef Ghanavati, B., & Moghaddam, E. T. (2014). Low-voltage current-mode WTA/LTA circuit. Universal Journal of Electrical and Electronic Engineering, 2, 161–164.CrossRef
19.
Zurück zum Zitat Prommee, P., Angkeaw, K., Somdunyakanok, M., & Dejhan, K. (2009). CMOS based near zero-offset multiple inputs max–min circuits and its applications. Analog Integrated Circuit and Signal Processing, 61, 93–105.CrossRef Prommee, P., Angkeaw, K., Somdunyakanok, M., & Dejhan, K. (2009). CMOS based near zero-offset multiple inputs max–min circuits and its applications. Analog Integrated Circuit and Signal Processing, 61, 93–105.CrossRef
20.
Zurück zum Zitat Wang, H., Zeng, Y., & Li, Z. (2014). Current mode maximum and minimum circuit. Applied Mechanics and Materials, 577, 478–481.CrossRef Wang, H., Zeng, Y., & Li, Z. (2014). Current mode maximum and minimum circuit. Applied Mechanics and Materials, 577, 478–481.CrossRef
21.
Zurück zum Zitat Soleimani, M., Toofan, S., & Yargholi, M. (2015). High-swing, high-resolution, low-power, low-area voltage-mode LTA/WTA circuits. Journal of Circuits, Systems, and Computers, 24, 1550103(1-15).CrossRef Soleimani, M., Toofan, S., & Yargholi, M. (2015). High-swing, high-resolution, low-power, low-area voltage-mode LTA/WTA circuits. Journal of Circuits, Systems, and Computers, 24, 1550103(1-15).CrossRef
22.
Zurück zum Zitat Khayatzadeh, R., Ghasemzadeh, M., & Mahdavi, S. (2016). A new current mode min-max circuit using CMOS technology for fuzzy applications. In International conference mixed design of integrated circuits and systems, Lodz, Poland (pp. 147–150). Khayatzadeh, R., Ghasemzadeh, M., & Mahdavi, S. (2016). A new current mode min-max circuit using CMOS technology for fuzzy applications. In International conference mixed design of integrated circuits and systems, Lodz, Poland (pp. 147–150).
23.
Zurück zum Zitat Chavoshisan, R., Hossein Moaiyeri, M., & Hashemipour, O. (2015). A high-performance low-voltage current-mode min/max circuit. Compel—The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 34, 1172–1183.CrossRef Chavoshisan, R., Hossein Moaiyeri, M., & Hashemipour, O. (2015). A high-performance low-voltage current-mode min/max circuit. Compel—The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 34, 1172–1183.CrossRef
24.
Zurück zum Zitat Boussetta, M., Hamdaouy, R., & Slaoui, K. (2018). Implementation of CMOS min–max circuit in 0.13 μm. International Journal of Engineering & Technology, 7, 218–220. Boussetta, M., Hamdaouy, R., & Slaoui, K. (2018). Implementation of CMOS min–max circuit in 0.13 μm. International Journal of Engineering & Technology, 7, 218–220.
25.
Zurück zum Zitat Gupta, M., Aggarwal, B., & Kumar, A. G. (2013). A very high performance self-biased cascode current mirror for CMOS technology. Analog Integrated Circuits and Signal Processing, 75, 67–74.CrossRef Gupta, M., Aggarwal, B., & Kumar, A. G. (2013). A very high performance self-biased cascode current mirror for CMOS technology. Analog Integrated Circuits and Signal Processing, 75, 67–74.CrossRef
Metadaten
Titel
High Precision Low-Voltage WTA/LTA Circuit for Signal Processing Applications
verfasst von
Rishikesh Pandey
Sahib Singh
Publikationsdatum
04.04.2019
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2019
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-06334-w

Weitere Artikel der Ausgabe 2/2019

Wireless Personal Communications 2/2019 Zur Ausgabe

Neuer Inhalt