Skip to main content
Erschienen in: Journal of Materials Science 2/2019

15.10.2018 | Energy materials

High proton conductivity polybenzimidazole proton exchange membrane based on phosphotungstic acid-anchored nano-Kevlar fibers

verfasst von: Xiao-Bing Yang, Ling-Hui Meng, Xu-Lei Sui, Zhen-Bo Wang

Erschienen in: Journal of Materials Science | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel polybenzimidazole (PBI) proton exchange membrane based on phosphotungstic acid (PWA)-anchored nano-Kevlar fibers (NKFs) has been successfully prepared by solution casting. Employing NKFs instead of frequently used oxide support as anchoring agent has effectively conquered the problem of the poor interface compatibility between the inorganic component and the polymer, resulting in the excellent dispersion of PWA in the matrix and providing favorable conditions for the formation of consecutive proton transport channels. The as-obtained PBI/NKFs@PWA membrane exhibits proton conductivities as high as 0.029 and 0.051 S cm−1 at 20 and 80 °C without extra humidity, respectively. And benefit from the undetectable leakage of PWA, the proton conductivity retention could achieve 93.16% within 500 h. Simultaneously, the methanol barrier property of the hybrid membrane is far beyond Nafion, indicating a membrane selectivity of 12.08 × 104 S (s cm−3), which is 8.21 times higher than that of Nafion 115. The hybrid membrane allowed for sufficient proton conductivity, robust stability, lower methanol permeability, as well as low cost compared with Nafion, shows great potential for direct methanol fuel cell applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Heinzel A, Steele BCH (2001) Materials for fuel-cell technologies. Nature 414:345–352CrossRef Heinzel A, Steele BCH (2001) Materials for fuel-cell technologies. Nature 414:345–352CrossRef
2.
Zurück zum Zitat Çelik SÜ, Bozkurt A, Hosseini SS (2012) Alternatives toward proton conductive anhydrous membranes for fuel cells: heterocyclic protogenic solvents comprising polymer electrolytes. Prog Polym Sci 37:1265–1291CrossRef Çelik SÜ, Bozkurt A, Hosseini SS (2012) Alternatives toward proton conductive anhydrous membranes for fuel cells: heterocyclic protogenic solvents comprising polymer electrolytes. Prog Polym Sci 37:1265–1291CrossRef
3.
Zurück zum Zitat Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104:4587–4612CrossRef Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104:4587–4612CrossRef
4.
Zurück zum Zitat Feng K, Tang B, Wu P (2015) Ammonia-assisted dehydrofluorination between PVDF and Nafion for highly selective and low-cost proton exchange membranes: a possible way to further strengthen the commercialization of Nafion. J Mater Chem A 3:12609–12615CrossRef Feng K, Tang B, Wu P (2015) Ammonia-assisted dehydrofluorination between PVDF and Nafion for highly selective and low-cost proton exchange membranes: a possible way to further strengthen the commercialization of Nafion. J Mater Chem A 3:12609–12615CrossRef
5.
Zurück zum Zitat Wu L, Zhang Z, Ran J, Zhou D, Li C, Xu T (2013) Advances in proton-exchange membranes for fuel cells: an overview on proton conductive channels (PCCs). Phys Chem Chem Phys 3:4870–4887CrossRef Wu L, Zhang Z, Ran J, Zhou D, Li C, Xu T (2013) Advances in proton-exchange membranes for fuel cells: an overview on proton conductive channels (PCCs). Phys Chem Chem Phys 3:4870–4887CrossRef
6.
Zurück zum Zitat Bose S, Kuila T, Nguyen TXH, Kim NH, Lau K, Lee JH (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog Polym Sci 37:813–843CrossRef Bose S, Kuila T, Nguyen TXH, Kim NH, Lau K, Lee JH (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog Polym Sci 37:813–843CrossRef
7.
Zurück zum Zitat Park CH, Lee CH, Guiver MD, Lee YM (2011) Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs). Prog Polym Sci 37:1443–1498CrossRef Park CH, Lee CH, Guiver MD, Lee YM (2011) Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs). Prog Polym Sci 37:1443–1498CrossRef
8.
Zurück zum Zitat Lim Y, Seo D, Lee S, Jang H, Ju H, Jo A, Kim D, Kim W (2014) High efficiency of proton transport by clustering nanochannels in multi-sulfonated propeller-like nonplanar hexaphenylbenzene poly(ether sulfone)s. Int J Hydrog Energy 39:2756–2766CrossRef Lim Y, Seo D, Lee S, Jang H, Ju H, Jo A, Kim D, Kim W (2014) High efficiency of proton transport by clustering nanochannels in multi-sulfonated propeller-like nonplanar hexaphenylbenzene poly(ether sulfone)s. Int J Hydrog Energy 39:2756–2766CrossRef
9.
Zurück zum Zitat Wang B, Tseng CK, Shih C, Pai Y, Kuo H, Lue SJ (2014) Polytetrafluoroethylene (PTFE)/silane cross-linked sulfonated poly(styrene–ethylene/butylene–styrene) (sSEBS) composite membrane for direct alcohol and formic acid fuel cells. J Membr Sci 464:43–54CrossRef Wang B, Tseng CK, Shih C, Pai Y, Kuo H, Lue SJ (2014) Polytetrafluoroethylene (PTFE)/silane cross-linked sulfonated poly(styrene–ethylene/butylene–styrene) (sSEBS) composite membrane for direct alcohol and formic acid fuel cells. J Membr Sci 464:43–54CrossRef
10.
Zurück zum Zitat Tripathi BP, Shahi VK (2011) Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog Polym Sci 36:945–979CrossRef Tripathi BP, Shahi VK (2011) Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog Polym Sci 36:945–979CrossRef
11.
Zurück zum Zitat Yang J, Li Q, Cleemann LN, Jensen JO, Pan C, Bjerrum NJ, He R (2013) Crosslinked hexafluoropropylidene polybenzimidazole membranes with chloromethyl polysulfone for fuel cell applications. Adv Energy Mater 3:622–630CrossRef Yang J, Li Q, Cleemann LN, Jensen JO, Pan C, Bjerrum NJ, He R (2013) Crosslinked hexafluoropropylidene polybenzimidazole membranes with chloromethyl polysulfone for fuel cell applications. Adv Energy Mater 3:622–630CrossRef
12.
Zurück zum Zitat Li Q, Jensen JO, Savinell RF, Bjerrum NJ (2009) High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog Polym Sci 34:449–477CrossRef Li Q, Jensen JO, Savinell RF, Bjerrum NJ (2009) High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog Polym Sci 34:449–477CrossRef
13.
Zurück zum Zitat Weng D, Wainright JS, Landau U, Savinell RF (1996) Electro-osmotic drag coefficient of water and methanol in polymer electrolytes at elevated temperatures. J Electrochem Soc 143:1259–1263CrossRef Weng D, Wainright JS, Landau U, Savinell RF (1996) Electro-osmotic drag coefficient of water and methanol in polymer electrolytes at elevated temperatures. J Electrochem Soc 143:1259–1263CrossRef
14.
Zurück zum Zitat Zhang H, Shen PK (2012) Recent development of polymer electrolyte membranes for fuel cells. Chem Rev 112:2780–2832CrossRef Zhang H, Shen PK (2012) Recent development of polymer electrolyte membranes for fuel cells. Chem Rev 112:2780–2832CrossRef
15.
Zurück zum Zitat Diaz LA, Abuin GC, Corti HR (2012) Methanol sorption and permeability in Nafion and acid-doped PBI and ABPBI membranes. J Membr Sci 411:35–44CrossRef Diaz LA, Abuin GC, Corti HR (2012) Methanol sorption and permeability in Nafion and acid-doped PBI and ABPBI membranes. J Membr Sci 411:35–44CrossRef
16.
Zurück zum Zitat Mondal S, Soam S, Kundu PP (2015) Reduction of methanol crossover and improved electrical efficiency in direct methanol fuel cell by the formation of a thin layer on Nafion 117 membrane: effect of dip-coating of a blend of sulphonated PVDF-co-HFP and PBI. J Membr Sci 474:140–147CrossRef Mondal S, Soam S, Kundu PP (2015) Reduction of methanol crossover and improved electrical efficiency in direct methanol fuel cell by the formation of a thin layer on Nafion 117 membrane: effect of dip-coating of a blend of sulphonated PVDF-co-HFP and PBI. J Membr Sci 474:140–147CrossRef
17.
Zurück zum Zitat Gu T, Shimpalee S, Van Zee JW, Chen CY, Lin CW (2010) A study of water adsorption and desorption by a PBI–H3PO4 membrane electrode assembly. J Power Sources 195:8194–8197CrossRef Gu T, Shimpalee S, Van Zee JW, Chen CY, Lin CW (2010) A study of water adsorption and desorption by a PBI–H3PO4 membrane electrode assembly. J Power Sources 195:8194–8197CrossRef
18.
Zurück zum Zitat Lin H, Tang T, Hu C, Yu TL (2012) Poly(benzimidazole)/silica-ethyl-phosphoric acid hybrid membranes for proton exchange membrane fuel cells. J Power Sources 201:72–80CrossRef Lin H, Tang T, Hu C, Yu TL (2012) Poly(benzimidazole)/silica-ethyl-phosphoric acid hybrid membranes for proton exchange membrane fuel cells. J Power Sources 201:72–80CrossRef
19.
Zurück zum Zitat Rikukawa M, Sanui K (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog Polym Sci 25:1463–1502CrossRef Rikukawa M, Sanui K (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog Polym Sci 25:1463–1502CrossRef
20.
Zurück zum Zitat Asensio JA, Gómez-Romero P (2005) Recent developments on proton conducting poly(2,5-benzimidazole) (ABPBI) membranes for high temperature polymer electrolyte membrane fuel cells. Fuel Cells 5:336–343CrossRef Asensio JA, Gómez-Romero P (2005) Recent developments on proton conducting poly(2,5-benzimidazole) (ABPBI) membranes for high temperature polymer electrolyte membrane fuel cells. Fuel Cells 5:336–343CrossRef
21.
Zurück zum Zitat Villa DC, Angioni S, Barco SD, Mustarelli P, Quartarone E (2014) Polysulfonated fluoro-oxyPBI membranes for PEMFCs: an efficient strategy to achieve good fuel cell performances with low H3PO4 doping levels. Adv Energy Mater 4:1301949CrossRef Villa DC, Angioni S, Barco SD, Mustarelli P, Quartarone E (2014) Polysulfonated fluoro-oxyPBI membranes for PEMFCs: an efficient strategy to achieve good fuel cell performances with low H3PO4 doping levels. Adv Energy Mater 4:1301949CrossRef
22.
Zurück zum Zitat Nawn G, Pace G, Lavina S, Vezzù K, Negro E, Bertasi F, Polizzi S, Noto VD (2014) Interplay between composition, structure, and properties of new H3PO4-doped PBI4N-HfO2 nanocomposite membranes for high-temperature proton exchange membrane fuel cells. Macromolecules 48:15–27CrossRef Nawn G, Pace G, Lavina S, Vezzù K, Negro E, Bertasi F, Polizzi S, Noto VD (2014) Interplay between composition, structure, and properties of new H3PO4-doped PBI4N-HfO2 nanocomposite membranes for high-temperature proton exchange membrane fuel cells. Macromolecules 48:15–27CrossRef
23.
Zurück zum Zitat Özdemir Y, Özkan N, Devrim Y (2017) Fabrication and characterization of cross-linked polybenzimidazole based membranes for high temperature PEM fuel cells. Electrochim Acta 245:1–13CrossRef Özdemir Y, Özkan N, Devrim Y (2017) Fabrication and characterization of cross-linked polybenzimidazole based membranes for high temperature PEM fuel cells. Electrochim Acta 245:1–13CrossRef
24.
Zurück zum Zitat Maity S, Jana T (2014) Polybenzimidazole block copolymers for fuel cell: synthesis and studies of block length effects on nanophase separation, mechanical properties, and proton conductivity of PEM. ACS Appl Mater Interfaces 6:6851–6864CrossRef Maity S, Jana T (2014) Polybenzimidazole block copolymers for fuel cell: synthesis and studies of block length effects on nanophase separation, mechanical properties, and proton conductivity of PEM. ACS Appl Mater Interfaces 6:6851–6864CrossRef
25.
Zurück zum Zitat Jahangiri S, Aravi İ, Işıkel Şanlı L, Menceloğlu YZ, Özden-Yenigün E (2018) Fabrication and optimization of proton conductive polybenzimidazole electrospun nanofiber membranes. Polym Adv Technol 29:594–602CrossRef Jahangiri S, Aravi İ, Işıkel Şanlı L, Menceloğlu YZ, Özden-Yenigün E (2018) Fabrication and optimization of proton conductive polybenzimidazole electrospun nanofiber membranes. Polym Adv Technol 29:594–602CrossRef
26.
Zurück zum Zitat Li Q, He R, Jensen JO, Bjerrum NJ (2003) Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C. Chem Mater 15:4896–4915CrossRef Li Q, He R, Jensen JO, Bjerrum NJ (2003) Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C. Chem Mater 15:4896–4915CrossRef
27.
Zurück zum Zitat Martínez-Morlanes MJ, Martos AM, Várez A, Levenfeld B (2015) Synthesis and characterization of novel hybrid polysulfone/silica membranes doped with phosphomolybdic acid for fuel cell applications. J Membr Sci 492:371–379CrossRef Martínez-Morlanes MJ, Martos AM, Várez A, Levenfeld B (2015) Synthesis and characterization of novel hybrid polysulfone/silica membranes doped with phosphomolybdic acid for fuel cell applications. J Membr Sci 492:371–379CrossRef
28.
Zurück zum Zitat Bose AB, Gopu S, Li W (2014) Enhancement of proton exchange membrane fuel cells performance at elevated temperatures and lower humidities by incorporating immobilized phosphotungstic acid in electrodes. J Power Sources 263:217–222CrossRef Bose AB, Gopu S, Li W (2014) Enhancement of proton exchange membrane fuel cells performance at elevated temperatures and lower humidities by incorporating immobilized phosphotungstic acid in electrodes. J Power Sources 263:217–222CrossRef
29.
Zurück zum Zitat Zhang B, Cao Y, Li Z, Wu H, Yin Y, Cao L, He X, Jiang Z (2017) Proton exchange nanohybrid membranes with high phosphotungstic acid loading within metal-organic frameworks for PEMFC applications. Electrochim Acta 240:186–194CrossRef Zhang B, Cao Y, Li Z, Wu H, Yin Y, Cao L, He X, Jiang Z (2017) Proton exchange nanohybrid membranes with high phosphotungstic acid loading within metal-organic frameworks for PEMFC applications. Electrochim Acta 240:186–194CrossRef
30.
Zurück zum Zitat Amirinejad M, Madaeni SS, Navarra MA, Rafiee E, Scrosati B (2011) Preparation and characterization of phosphotungstic acid-derived salt/Nafion nanocomposite membranes for proton exchange membrane fuel cells. J Power Sources 196:988–998CrossRef Amirinejad M, Madaeni SS, Navarra MA, Rafiee E, Scrosati B (2011) Preparation and characterization of phosphotungstic acid-derived salt/Nafion nanocomposite membranes for proton exchange membrane fuel cells. J Power Sources 196:988–998CrossRef
31.
Zurück zum Zitat Lu S, Xu X, Zhang J, Peng S, Liang D, Wang H, Xiang Y (2014) A self-anchored phosphotungstic acid hybrid proton exchange membrane achieved via one-step synthesis. Adv Energy Mater 4:1400842CrossRef Lu S, Xu X, Zhang J, Peng S, Liang D, Wang H, Xiang Y (2014) A self-anchored phosphotungstic acid hybrid proton exchange membrane achieved via one-step synthesis. Adv Energy Mater 4:1400842CrossRef
32.
Zurück zum Zitat Rao S, Xiu R, Si J, Lu S, Yang M, Xiang Y (2014) In situ synthesis of nanocomposite membranes: comprehensive improvement strategy for Direct Methanol Fuel Cells. Chemsuschem 7:822–828CrossRef Rao S, Xiu R, Si J, Lu S, Yang M, Xiang Y (2014) In situ synthesis of nanocomposite membranes: comprehensive improvement strategy for Direct Methanol Fuel Cells. Chemsuschem 7:822–828CrossRef
33.
Zurück zum Zitat Du Y, Yang P, Zhou S, Li J, Du X, Lei J (2018) Direct synthesis of ordered meso/macrostructured phosphotungstic acid/SiO2 by EISA method and its catalytic performance of fuel oil. Mater Res Bull 97:42–48CrossRef Du Y, Yang P, Zhou S, Li J, Du X, Lei J (2018) Direct synthesis of ordered meso/macrostructured phosphotungstic acid/SiO2 by EISA method and its catalytic performance of fuel oil. Mater Res Bull 97:42–48CrossRef
34.
Zurück zum Zitat Lu S, Wang D, Jiang SP, Xiang Y, Lu J, Zeng J (2010) HPW/MCM-41 phosphotungstic acid/mesoporous silica composites as novel proton-exchange membranes for elevated-temperature fuel cells. Adv Mater 22:971–976CrossRef Lu S, Wang D, Jiang SP, Xiang Y, Lu J, Zeng J (2010) HPW/MCM-41 phosphotungstic acid/mesoporous silica composites as novel proton-exchange membranes for elevated-temperature fuel cells. Adv Mater 22:971–976CrossRef
35.
Zurück zum Zitat Huang D, Wang YJ, Yang LM, Luo GS (2006) Direct synthesis of mesoporous TiO2 modified with phosphotungstic acid under template-free condition. Micropor Mesopor Mat 96:301–306CrossRef Huang D, Wang YJ, Yang LM, Luo GS (2006) Direct synthesis of mesoporous TiO2 modified with phosphotungstic acid under template-free condition. Micropor Mesopor Mat 96:301–306CrossRef
36.
Zurück zum Zitat Sacca A, Carbone A, Pedicini R, Marrony M, Barrera R, Elomaa M, Passalacqua E (2008) Phosphotungstic acid supported on a nanopowdered ZrO2 as a filler in Nafion-based membranes for polymer electrolyte fuel cells. Fuel Cells 8:225–235CrossRef Sacca A, Carbone A, Pedicini R, Marrony M, Barrera R, Elomaa M, Passalacqua E (2008) Phosphotungstic acid supported on a nanopowdered ZrO2 as a filler in Nafion-based membranes for polymer electrolyte fuel cells. Fuel Cells 8:225–235CrossRef
37.
Zurück zum Zitat Hasani-Sadrabadi MM, Dashtimoghadam E, Majedi FS, VanDersarl JJ, Bertsch A, Renaud P, Jacob KI (2016) Ionic nanopeapods: next-generation proton conducting membranes based on phosphotungstic acid filled carbon nanotube. Nano Energy 23:114–121CrossRef Hasani-Sadrabadi MM, Dashtimoghadam E, Majedi FS, VanDersarl JJ, Bertsch A, Renaud P, Jacob KI (2016) Ionic nanopeapods: next-generation proton conducting membranes based on phosphotungstic acid filled carbon nanotube. Nano Energy 23:114–121CrossRef
38.
Zurück zum Zitat Leroux F, Taviot-Guého C (2005) Fine tuning between organic and inorganic host structure: new trends in layered double hydroxide hybrid assemblies. J Mater Chem 15:3628CrossRef Leroux F, Taviot-Guého C (2005) Fine tuning between organic and inorganic host structure: new trends in layered double hydroxide hybrid assemblies. J Mater Chem 15:3628CrossRef
39.
Zurück zum Zitat Sakhno OV, Goldenberg LM, Stumpe J, Smirnova TN (2007) Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms. Nanotechnology 18:105704–105710CrossRef Sakhno OV, Goldenberg LM, Stumpe J, Smirnova TN (2007) Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms. Nanotechnology 18:105704–105710CrossRef
40.
Zurück zum Zitat Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957CrossRef Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957CrossRef
41.
Zurück zum Zitat Mishra AK, Bose S, Kuila T, Kim NH, Lee JH (2012) Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells. Prog Polym Sci 37:842–869CrossRef Mishra AK, Bose S, Kuila T, Kim NH, Lee JH (2012) Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells. Prog Polym Sci 37:842–869CrossRef
42.
Zurück zum Zitat Abouzari-lotf E, Nasef MM, Ghassemi H, Zakeri M, Ahmad A, Abdollahi Y (2015) Improved methanol barrier property of Nafion hybrid membrane by incorporating nanofibrous interlayer self-immobilized with high level of phosphotungstic acid. ACS Appl Mater Interfaces 7:17008–17015CrossRef Abouzari-lotf E, Nasef MM, Ghassemi H, Zakeri M, Ahmad A, Abdollahi Y (2015) Improved methanol barrier property of Nafion hybrid membrane by incorporating nanofibrous interlayer self-immobilized with high level of phosphotungstic acid. ACS Appl Mater Interfaces 7:17008–17015CrossRef
43.
Zurück zum Zitat Abouzari-lotf E, Jacob MV, Ghassemi H, Ahmad A, Nasef MM, Zakeri M, Mehdipour-Ataei S (2016) Enhancement of fuel cell performance with less-water dependent composite membranes having polyoxometalate anchored nanofibrous interlayer. J Power Sources 326:482–489CrossRef Abouzari-lotf E, Jacob MV, Ghassemi H, Ahmad A, Nasef MM, Zakeri M, Mehdipour-Ataei S (2016) Enhancement of fuel cell performance with less-water dependent composite membranes having polyoxometalate anchored nanofibrous interlayer. J Power Sources 326:482–489CrossRef
44.
Zurück zum Zitat Jia W, Feng K, Tang B, Wu P (2015) β-Cyclodextrin modified silica nanoparticles for Nafion based proton exchange membranes with significantly enhanced transport properties. J Mater Chem A 3:15607–15615CrossRef Jia W, Feng K, Tang B, Wu P (2015) β-Cyclodextrin modified silica nanoparticles for Nafion based proton exchange membranes with significantly enhanced transport properties. J Mater Chem A 3:15607–15615CrossRef
45.
Zurück zum Zitat Xu X, Wang H, Lu S, Peng S, Xiang Y (2016) A phosphotungstic acid self-anchored hybrid proton exchange membrane for direct methanol fuel cells. RSC Adv 6:43049–43055CrossRef Xu X, Wang H, Lu S, Peng S, Xiang Y (2016) A phosphotungstic acid self-anchored hybrid proton exchange membrane for direct methanol fuel cells. RSC Adv 6:43049–43055CrossRef
46.
Zurück zum Zitat Banerjee S, Kar KK (2016) Aluminum-substituted phosphotungstic acid/sulfonated poly ether ether ketone nanocomposite membrane with reduced leaching and improved proton conductivity. High Perform Polym 28:1043–1058CrossRef Banerjee S, Kar KK (2016) Aluminum-substituted phosphotungstic acid/sulfonated poly ether ether ketone nanocomposite membrane with reduced leaching and improved proton conductivity. High Perform Polym 28:1043–1058CrossRef
47.
Zurück zum Zitat Zhong S, Cui X, Gao Y, Liu W, Dou S (2014) Fabrication and properties of poly(vinyl alcohol)-based polymer electrolyte membranes for direct methanol fuel cell applications. Int J Hydrog Energy 39:17857–17864CrossRef Zhong S, Cui X, Gao Y, Liu W, Dou S (2014) Fabrication and properties of poly(vinyl alcohol)-based polymer electrolyte membranes for direct methanol fuel cell applications. Int J Hydrog Energy 39:17857–17864CrossRef
48.
Zurück zum Zitat Wu Q, Wang H, Lu S, Xu X, Liang D, Xiang Y (2016) Novel methanol-blocking proton exchange membrane achieved via self-anchoring phosphotungstic acid into chitosan membrane with submicro-pores. J Membr Sci 500:203–210CrossRef Wu Q, Wang H, Lu S, Xu X, Liang D, Xiang Y (2016) Novel methanol-blocking proton exchange membrane achieved via self-anchoring phosphotungstic acid into chitosan membrane with submicro-pores. J Membr Sci 500:203–210CrossRef
49.
Zurück zum Zitat Ogawa T, Kamiguchi K, Tamaki T, Imai H, Yamaguchi T (2014) Differentiating Grotthuss proton conduction mechanisms by nuclear magnetic resonance spectroscopic analysis of frozen samples. Anal Chem 86:9362–9366CrossRef Ogawa T, Kamiguchi K, Tamaki T, Imai H, Yamaguchi T (2014) Differentiating Grotthuss proton conduction mechanisms by nuclear magnetic resonance spectroscopic analysis of frozen samples. Anal Chem 86:9362–9366CrossRef
50.
Zurück zum Zitat Chen Y, Thorn M, Christensen S, Versek C, Poe A, Hayward RC, Tuominen MT, Thayumanavan S (2010) Enhancement of anhydrous proton transport by supramolecular nanochannels in comb polymers. Nat Chem 2:503–508CrossRef Chen Y, Thorn M, Christensen S, Versek C, Poe A, Hayward RC, Tuominen MT, Thayumanavan S (2010) Enhancement of anhydrous proton transport by supramolecular nanochannels in comb polymers. Nat Chem 2:503–508CrossRef
51.
Zurück zum Zitat Rao Z, Feng K, Tang B, Wu P (2017) Construction of well interconnected metal-organic framework structure for effectively promoting proton conductivity of proton exchange membrane. J Membr Sci 533:160–170CrossRef Rao Z, Feng K, Tang B, Wu P (2017) Construction of well interconnected metal-organic framework structure for effectively promoting proton conductivity of proton exchange membrane. J Membr Sci 533:160–170CrossRef
52.
Zurück zum Zitat Ogawa T, Aonuma T, Tamaki T, Ohashi H, Ushiyama H, Yamashita K, Yamaguchi T (2014) The proton conduction mechanism in a material consisting of packed acids. Chem Sci 5:4878–4887CrossRef Ogawa T, Aonuma T, Tamaki T, Ohashi H, Ushiyama H, Yamashita K, Yamaguchi T (2014) The proton conduction mechanism in a material consisting of packed acids. Chem Sci 5:4878–4887CrossRef
53.
Zurück zum Zitat Vuilleumier R, Borgis D (2012) Hopping along hydrogen bonds. Nat Chem 4:432–433CrossRef Vuilleumier R, Borgis D (2012) Hopping along hydrogen bonds. Nat Chem 4:432–433CrossRef
54.
Zurück zum Zitat Wei Y, Shang Y, Ni C, Zhang H, Li X, Liu B, Men Y, Zhang M, Hu W (2017) Modified nanocrystal cellulose/fluorene-containing sulfonated poly(ether ether ketone ketone) composites for proton exchange membranes. Appl Surf Sci 416:996–1006CrossRef Wei Y, Shang Y, Ni C, Zhang H, Li X, Liu B, Men Y, Zhang M, Hu W (2017) Modified nanocrystal cellulose/fluorene-containing sulfonated poly(ether ether ketone ketone) composites for proton exchange membranes. Appl Surf Sci 416:996–1006CrossRef
55.
Zurück zum Zitat Matsuki Y, Iwamoto M, Mita K, Shigemi K, Matsunaga S, Oiki S (2016) Rectified proton grotthuss conduction across a long water-wire in the test nanotube of the polytheonamide B channel. J Am Chem Soc 138:4168–4177CrossRef Matsuki Y, Iwamoto M, Mita K, Shigemi K, Matsunaga S, Oiki S (2016) Rectified proton grotthuss conduction across a long water-wire in the test nanotube of the polytheonamide B channel. J Am Chem Soc 138:4168–4177CrossRef
56.
Zurück zum Zitat Benhabbour SR, Chapman RP, Scharfenberger G, Meyer WH, Goward GR (2005) Study of imidazole-based proton-conducting composite materials using solid-state NMR. Chem Mater 17:1605–1612CrossRef Benhabbour SR, Chapman RP, Scharfenberger G, Meyer WH, Goward GR (2005) Study of imidazole-based proton-conducting composite materials using solid-state NMR. Chem Mater 17:1605–1612CrossRef
57.
Zurück zum Zitat Liu J, Li X, Wu J, Dai Z, Song X (2016) Structural transformation of an imidazolium-templated two-dimensional aluminophosphate and its proton conduction under anhydrous conditions. Mater Lett 184:119–122CrossRef Liu J, Li X, Wu J, Dai Z, Song X (2016) Structural transformation of an imidazolium-templated two-dimensional aluminophosphate and its proton conduction under anhydrous conditions. Mater Lett 184:119–122CrossRef
58.
Zurück zum Zitat Lage LG, Delgado PG, Kawan Y (2004) Thermal stability and decomposition of Nafion® membranes with different cations using high-resolution thermogravimetry. J Therm Anal Cal 75:521–530CrossRef Lage LG, Delgado PG, Kawan Y (2004) Thermal stability and decomposition of Nafion® membranes with different cations using high-resolution thermogravimetry. J Therm Anal Cal 75:521–530CrossRef
59.
Zurück zum Zitat Hasani-Sadrabadi MM, Dashtimoghadam E, Majedi FS, Moaddel H, Bertsch A, Renaud P (2013) Superacid-doped polybenzimidazole-decorated carbon nanotubes: a novel high-performance proton exchange nanocomposite membrane. Nanoscale 5:11710–11717CrossRef Hasani-Sadrabadi MM, Dashtimoghadam E, Majedi FS, Moaddel H, Bertsch A, Renaud P (2013) Superacid-doped polybenzimidazole-decorated carbon nanotubes: a novel high-performance proton exchange nanocomposite membrane. Nanoscale 5:11710–11717CrossRef
60.
Zurück zum Zitat Bhavsar RS, Kumbharkar SC, Rewar AS, Kharul UK (2014) Polybenzimidazole based film forming polymeric ionic liquids: synthesis and effects of cation–anion variation on their physical properties. Polym Chem 5:4083–4096CrossRef Bhavsar RS, Kumbharkar SC, Rewar AS, Kharul UK (2014) Polybenzimidazole based film forming polymeric ionic liquids: synthesis and effects of cation–anion variation on their physical properties. Polym Chem 5:4083–4096CrossRef
61.
Zurück zum Zitat Baker AM, Wang L, Johnson WB, Prasad AK, Advani SG (2014) Nafion membranes reinforced with ceria-coated multiwall carbon nanotubes for improved mechanical and chemical durability in polymer electrolyte membrane fuel cells. J Phys Chem C 118:26796–26802CrossRef Baker AM, Wang L, Johnson WB, Prasad AK, Advani SG (2014) Nafion membranes reinforced with ceria-coated multiwall carbon nanotubes for improved mechanical and chemical durability in polymer electrolyte membrane fuel cells. J Phys Chem C 118:26796–26802CrossRef
62.
Zurück zum Zitat Li Y, Wang H, Wu Q, Xu X, Lu S, Xiang Y (2017) A poly(vinyl alcohol)-based composite membrane with immobilized phosphotungstic acid molecules for direct methanol fuel cells. Electrochim Acta 224:369–377CrossRef Li Y, Wang H, Wu Q, Xu X, Lu S, Xiang Y (2017) A poly(vinyl alcohol)-based composite membrane with immobilized phosphotungstic acid molecules for direct methanol fuel cells. Electrochim Acta 224:369–377CrossRef
63.
Zurück zum Zitat He Q, Zheng J, Zhang S (2014) Preparation and characterization of high performance sulfonated poly(p-phenylene-co-aryl ether ketone) membranes for direct methanol fuel cells. J Power Sources 260:317–325CrossRef He Q, Zheng J, Zhang S (2014) Preparation and characterization of high performance sulfonated poly(p-phenylene-co-aryl ether ketone) membranes for direct methanol fuel cells. J Power Sources 260:317–325CrossRef
64.
Zurück zum Zitat Devi AU, Divya K, Divya D, Saraswathi MSA, Nagendran A (2018) Highly selective and methanol resistant polypyrrole laminated SPVdFco-HFP/PWA proton exchange membranes for DMFC applications. Mater Chem Phys 212:533–542CrossRef Devi AU, Divya K, Divya D, Saraswathi MSA, Nagendran A (2018) Highly selective and methanol resistant polypyrrole laminated SPVdFco-HFP/PWA proton exchange membranes for DMFC applications. Mater Chem Phys 212:533–542CrossRef
65.
Zurück zum Zitat Yang CW, Chen CC, Chen KH, Cheng S (2017) Effect of pore-directing agents in SBA-15 nanoparticles on the performance of Nafion®/SBA-15n composite membranes for DMFC. J Membr Sci 526:106–117CrossRef Yang CW, Chen CC, Chen KH, Cheng S (2017) Effect of pore-directing agents in SBA-15 nanoparticles on the performance of Nafion®/SBA-15n composite membranes for DMFC. J Membr Sci 526:106–117CrossRef
Metadaten
Titel
High proton conductivity polybenzimidazole proton exchange membrane based on phosphotungstic acid-anchored nano-Kevlar fibers
verfasst von
Xiao-Bing Yang
Ling-Hui Meng
Xu-Lei Sui
Zhen-Bo Wang
Publikationsdatum
15.10.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 2/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2942-8

Weitere Artikel der Ausgabe 2/2019

Journal of Materials Science 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.