Skip to main content
Erschienen in: Journal of Nanoparticle Research 10/2017

01.10.2017 | Research Paper

High-rate synthesis of graphene by a lower cost chemical vapor deposition route

verfasst von: Sebastian Dayou, Brigitte Vigolo, Alexandre Desforges, Jaafar Ghanbaja, Abdul Rahman Mohamed

Erschienen in: Journal of Nanoparticle Research | Ausgabe 10/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Chemical vapor deposition (CVD) reaction from metal particles to produce graphene has seldom been reported so far. In this paper, the CVD growth of graphene was conducted under ambient pressure without a dedicated stage for reduction treatment. Interestingly, copper nanoparticles supported on MgO prepared by simple impregnation were able to efficiently catalyze graphene. Quantification of the prepared graphene was carefully conducted. For the optimized conditions, 1000 °C for 30 min, high content of graphene (up to 27 at.%) could be produced. Our method shows high efficiency and growth rate of graphene, produced at much lower cost compared to the existing methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ago H, Ito Y, Mizuta N, Yoshida K, Hu B, Orofeo CM, Tsuji M, Ikeda K-i, Mizuno S (2010) Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire. ACS Nano 4:7407–7414CrossRef Ago H, Ito Y, Mizuta N, Yoshida K, Hu B, Orofeo CM, Tsuji M, Ikeda K-i, Mizuno S (2010) Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire. ACS Nano 4:7407–7414CrossRef
Zurück zum Zitat Aksel C, Riley FL (2006) Magnesia-spinel (MgAl2O4) refractory ceramic composites. In: Low IM (ed) Ceramic-matrix composite: microstructure, properties and applications. Woodhead Pub. and Maney Pub, Cambridge, pp 359–393CrossRef Aksel C, Riley FL (2006) Magnesia-spinel (MgAl2O4) refractory ceramic composites. In: Low IM (ed) Ceramic-matrix composite: microstructure, properties and applications. Woodhead Pub. and Maney Pub, Cambridge, pp 359–393CrossRef
Zurück zum Zitat An H, Lee W-J, Jung J (2011) Graphene synthesis on Fe foil using thermal CVD. Curr Appl Phys 11:S81–S85CrossRef An H, Lee W-J, Jung J (2011) Graphene synthesis on Fe foil using thermal CVD. Curr Appl Phys 11:S81–S85CrossRef
Zurück zum Zitat Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef
Zurück zum Zitat Bhaviripudi S, Jia X, Dresselhaus MS, Kong J (2010) Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett 10:4128–4133CrossRef Bhaviripudi S, Jia X, Dresselhaus MS, Kong J (2010) Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett 10:4128–4133CrossRef
Zurück zum Zitat Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photon 4:611–622CrossRef Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photon 4:611–622CrossRef
Zurück zum Zitat Chae S, Lee Y (2014) Carbon nanotubes and graphene towards soft electronics. Nano Convergence 1:1–26CrossRef Chae S, Lee Y (2014) Carbon nanotubes and graphene towards soft electronics. Nano Convergence 1:1–26CrossRef
Zurück zum Zitat Chae SJ, Güneş F, Kim KK, Kim ES, Han GH, Kim SM, Shin H-J, Yoon S-M, Choi J-Y, Park MH, Yang CW, Pribat D, Lee YH (2009) Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv Mater 21:2328–2333CrossRef Chae SJ, Güneş F, Kim KK, Kim ES, Han GH, Kim SM, Shin H-J, Yoon S-M, Choi J-Y, Park MH, Yang CW, Pribat D, Lee YH (2009) Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv Mater 21:2328–2333CrossRef
Zurück zum Zitat Chen Z, Ren W, Liu B, Gao L, Pei S, Z-S W, Zhao J, Cheng H-M (2010) Bulk growth of mono- to few-layer graphene on nickel particles by chemical vapor deposition from methane. Carbon 48:3543–3550CrossRef Chen Z, Ren W, Liu B, Gao L, Pei S, Z-S W, Zhao J, Cheng H-M (2010) Bulk growth of mono- to few-layer graphene on nickel particles by chemical vapor deposition from methane. Carbon 48:3543–3550CrossRef
Zurück zum Zitat Dayou S, Vigolo B, Ghanbaja J, Medjahdi G, Ahmad Thirmizir MZ, Pauzi H, Mohamed AR (2017) Direct chemical vapor deposition growth of graphene nanosheets on supported copper oxide. Catal Lett 147:1988–1997CrossRef Dayou S, Vigolo B, Ghanbaja J, Medjahdi G, Ahmad Thirmizir MZ, Pauzi H, Mohamed AR (2017) Direct chemical vapor deposition growth of graphene nanosheets on supported copper oxide. Catal Lett 147:1988–1997CrossRef
Zurück zum Zitat Gallego J, Batiot-Dupeyat C, Mondragón F (2013) Activation energies and structural changes in carbon nanotubes during different acid treatments. J Therm Anal Calorim 114:597–602CrossRef Gallego J, Batiot-Dupeyat C, Mondragón F (2013) Activation energies and structural changes in carbon nanotubes during different acid treatments. J Therm Anal Calorim 114:597–602CrossRef
Zurück zum Zitat Gao H, Duan H (2015) 2D and 3D graphene materials: preparation and bioelectrochemical applications. Biosens Bioelectron 65:404–419CrossRef Gao H, Duan H (2015) 2D and 3D graphene materials: preparation and bioelectrochemical applications. Biosens Bioelectron 65:404–419CrossRef
Zurück zum Zitat Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef
Zurück zum Zitat Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN (2008) Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett 92:151911CrossRef Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN (2008) Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett 92:151911CrossRef
Zurück zum Zitat Green NS, Norton ML (2015) Interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices: a review. Anal Chim Acta 853:127–142CrossRef Green NS, Norton ML (2015) Interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices: a review. Anal Chim Acta 853:127–142CrossRef
Zurück zum Zitat Hu C, Song L, Zhang Z, Chen N, Feng Z, Qu L (2015) Tailored graphene systems for unconventional applications in energy conversion and storage devices. Energy Environ Sci 8:31–54CrossRef Hu C, Song L, Zhang Z, Chen N, Feng Z, Qu L (2015) Tailored graphene systems for unconventional applications in energy conversion and storage devices. Energy Environ Sci 8:31–54CrossRef
Zurück zum Zitat Kim E, Lee W-G, Jung J (2011) Agglomeration effects of thin metal catalyst on graphene film synthesized by chemical vapor deposition. Electron Mater Lett 7:261–264CrossRef Kim E, Lee W-G, Jung J (2011) Agglomeration effects of thin metal catalyst on graphene film synthesized by chemical vapor deposition. Electron Mater Lett 7:261–264CrossRef
Zurück zum Zitat Koltsova TS, Nasibulina LI, Anoshkin IV, Mishin VV, Kauppinen EI, Tolochko OV, Nasibulin AG (2012) New hybrid copper composite materials based on carbon nanostructures. J Mater Sci Eng B 2:240–246 Koltsova TS, Nasibulina LI, Anoshkin IV, Mishin VV, Kauppinen EI, Tolochko OV, Nasibulin AG (2012) New hybrid copper composite materials based on carbon nanostructures. J Mater Sci Eng B 2:240–246
Zurück zum Zitat Krishna KV, Ménard-Moyon C, Verma S, Bianco A (2013) Graphene-based nanomaterials for nanobiotechnology and biomedical applications. Nanomedicine 8:1669–1688CrossRef Krishna KV, Ménard-Moyon C, Verma S, Bianco A (2013) Graphene-based nanomaterials for nanobiotechnology and biomedical applications. Nanomedicine 8:1669–1688CrossRef
Zurück zum Zitat Kwak J, Kwon T-Y, Chu JH, Choi J-K, Lee M-S, Kim SY, Shin H-J, Park K, Park J-U, Kwon S-Y (2013) In situ observations of gas phase dynamics during graphene growth using solid-state carbon sources. PCCP 15:10446–10452CrossRef Kwak J, Kwon T-Y, Chu JH, Choi J-K, Lee M-S, Kim SY, Shin H-J, Park K, Park J-U, Kwon S-Y (2013) In situ observations of gas phase dynamics during graphene growth using solid-state carbon sources. PCCP 15:10446–10452CrossRef
Zurück zum Zitat Landi BJ, Cress CD, Evans CM, Raffaelle RP (2005a) Thermal oxidation profiling of single-walled carbon nanotubes. Chem Mater 17:6819–6834CrossRef Landi BJ, Cress CD, Evans CM, Raffaelle RP (2005a) Thermal oxidation profiling of single-walled carbon nanotubes. Chem Mater 17:6819–6834CrossRef
Zurück zum Zitat Landi BJ, Ruf HJ, Evans CM, Cress CD, Raffaelle RP (2005b) Purity assessment of single-wall carbon nanotubes, using optical absorption spectroscopy. J Phys Chem B 109:9952–9965CrossRef Landi BJ, Ruf HJ, Evans CM, Cress CD, Raffaelle RP (2005b) Purity assessment of single-wall carbon nanotubes, using optical absorption spectroscopy. J Phys Chem B 109:9952–9965CrossRef
Zurück zum Zitat Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef
Zurück zum Zitat Levchenko I, Ostrikov K, Zheng J, Li X, Keidar M, Teo K BK (2016) Scalable graphene production: perspectives and challenges of plasma applications. Nano 8:10511–10527 Levchenko I, Ostrikov K, Zheng J, Li X, Keidar M, Teo K BK (2016) Scalable graphene production: perspectives and challenges of plasma applications. Nano 8:10511–10527
Zurück zum Zitat Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009a) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314CrossRef Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009a) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314CrossRef
Zurück zum Zitat Li X, Cai W, Colombo L, Ruoff RS (2009b) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9:4268–4272CrossRef Li X, Cai W, Colombo L, Ruoff RS (2009b) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9:4268–4272CrossRef
Zurück zum Zitat Lin J-H, Chen C-S, Zeng Z-Y, Chang C-W, Chen H-W (2012) Sulphate-activated growth of bamboo-like carbon nanotubes over copper catalysts. Nano 4:4757–4764 Lin J-H, Chen C-S, Zeng Z-Y, Chang C-W, Chen H-W (2012) Sulphate-activated growth of bamboo-like carbon nanotubes over copper catalysts. Nano 4:4757–4764
Zurück zum Zitat Liu J, Liu Z, Barrow CJ, Yang W (2015) Molecularly engineered graphene surfaces for sensing applications: a review. Anal Chim Acta 859:1–19CrossRef Liu J, Liu Z, Barrow CJ, Yang W (2015) Molecularly engineered graphene surfaces for sensing applications: a review. Anal Chim Acta 859:1–19CrossRef
Zurück zum Zitat Shan C, Tang H, Wong T, He L, Lee ST (2012) Facile synthesis of a large quantity of graphene by chemical vapor deposition: an advanced catalyst carrier. Adv Mater 24:2491–2495CrossRef Shan C, Tang H, Wong T, He L, Lee ST (2012) Facile synthesis of a large quantity of graphene by chemical vapor deposition: an advanced catalyst carrier. Adv Mater 24:2491–2495CrossRef
Zurück zum Zitat Shen Y, Lua AC (2013) A facile method for the large-scale continuous synthesis of graphene sheets using a novel catalyst. Sci Rep 3:3037CrossRef Shen Y, Lua AC (2013) A facile method for the large-scale continuous synthesis of graphene sheets using a novel catalyst. Sci Rep 3:3037CrossRef
Zurück zum Zitat Shtein M, Pri-Bar I, Varenik M, Regev O (2015) Characterization of graphene-nanoplatelets structure via thermogravimetry. Anal Chem 87:4076–4080CrossRef Shtein M, Pri-Bar I, Varenik M, Regev O (2015) Characterization of graphene-nanoplatelets structure via thermogravimetry. Anal Chem 87:4076–4080CrossRef
Zurück zum Zitat Sittisart P, Farid MM (2015) Fire retardant for phase change material. In: Visakh PM, Arao Y (eds) Flame retardants: polymer blends, composites and nanocomposites. Springer Internation Publishing, Cham, pp 187–108CrossRef Sittisart P, Farid MM (2015) Fire retardant for phase change material. In: Visakh PM, Arao Y (eds) Flame retardants: polymer blends, composites and nanocomposites. Springer Internation Publishing, Cham, pp 187–108CrossRef
Zurück zum Zitat Smith MR Jr, Hedges SW, LaCount R, Kern D, Shah N, Huffman GP, Bockrath B (2003) Selective oxidation of single-walled carbon nanotubes using carbon dioxide. Carbon 41:1221–1230CrossRef Smith MR Jr, Hedges SW, LaCount R, Kern D, Shah N, Huffman GP, Bockrath B (2003) Selective oxidation of single-walled carbon nanotubes using carbon dioxide. Carbon 41:1221–1230CrossRef
Zurück zum Zitat Sutcu M, Akkurt S, Okur S (2009) Influence of crystallographic orientation on hydration of MgO single crystals. Ceram Int 35:2571–2576CrossRef Sutcu M, Akkurt S, Okur S (2009) Influence of crystallographic orientation on hydration of MgO single crystals. Ceram Int 35:2571–2576CrossRef
Zurück zum Zitat Vander Wal RL, Ticich TM, Curtis VE (2001) Substrate–support interactions in metal-catalyzed carbon nanofiber growth. Carbon 39:2277–2289CrossRef Vander Wal RL, Ticich TM, Curtis VE (2001) Substrate–support interactions in metal-catalyzed carbon nanofiber growth. Carbon 39:2277–2289CrossRef
Zurück zum Zitat Wang Z, Liu C-J (2015) Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: current status and perspective. Nano Energy 11:277–293CrossRef Wang Z, Liu C-J (2015) Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: current status and perspective. Nano Energy 11:277–293CrossRef
Zurück zum Zitat Wang G, Shen X, Yao J, Park J (2009a) Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47:2049–2053CrossRef Wang G, Shen X, Yao J, Park J (2009a) Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47:2049–2053CrossRef
Zurück zum Zitat Wang X, You H, Liu F, Li M, Wan L, Li S, Li Q, Xu Y, Tian R, Yu Z, Xiang D, Cheng J (2009b) Large-scale synthesis of few-layered graphene using CVD. Chem Vap Depos 15:53–56CrossRef Wang X, You H, Liu F, Li M, Wan L, Li S, Li Q, Xu Y, Tian R, Yu Z, Xiang D, Cheng J (2009b) Large-scale synthesis of few-layered graphene using CVD. Chem Vap Depos 15:53–56CrossRef
Zurück zum Zitat Wang L, Lu X, Lei S, Song Y (2014) Graphene-based polyaniline nanocomposites: preparation, properties and applications. J Mater Chem A 2:4491–4509CrossRef Wang L, Lu X, Lei S, Song Y (2014) Graphene-based polyaniline nanocomposites: preparation, properties and applications. J Mater Chem A 2:4491–4509CrossRef
Zurück zum Zitat Wu W, Jauregui LA, Su Z, Liu Z, Bao J, Chen YP, Yu Q (2011) Growth of single crystal graphene arrays by locally controlling nucleation on polycrystalline Cu using chemical vapor deposition. Adv Mater 23:4898–4903CrossRef Wu W, Jauregui LA, Su Z, Liu Z, Bao J, Chen YP, Yu Q (2011) Growth of single crystal graphene arrays by locally controlling nucleation on polycrystalline Cu using chemical vapor deposition. Adv Mater 23:4898–4903CrossRef
Zurück zum Zitat Yan Z, Lin J, Peng Z, Sun Z, Zhu Y, Li L, Xiang C, Samuel EL, Kittrell C, Tour JM (2012) Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 6:9110–9117CrossRef Yan Z, Lin J, Peng Z, Sun Z, Zhu Y, Li L, Xiang C, Samuel EL, Kittrell C, Tour JM (2012) Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 6:9110–9117CrossRef
Zurück zum Zitat Yoshida T, Tanaka T, Yoshida H, Funabiki T, Yoshida S, Murata T (1995) Study of dehydration of magnesium hydroxide. J Phys Chem 99:10890–10896CrossRef Yoshida T, Tanaka T, Yoshida H, Funabiki T, Yoshida S, Murata T (1995) Study of dehydration of magnesium hydroxide. J Phys Chem 99:10890–10896CrossRef
Zurück zum Zitat Zhou W, Han Z, Wang J, Zhang Y, Jin Z, Sun X, Zhang Y, Yan C, Li Y (2006) Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett 6:2987–2990CrossRef Zhou W, Han Z, Wang J, Zhang Y, Jin Z, Sun X, Zhang Y, Yan C, Li Y (2006) Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett 6:2987–2990CrossRef
Zurück zum Zitat Zurutuza A, Marinelli C (2014) Challenges and opportunities in graphene commercialization. Nat Nanotechnol 9:730–734CrossRef Zurutuza A, Marinelli C (2014) Challenges and opportunities in graphene commercialization. Nat Nanotechnol 9:730–734CrossRef
Metadaten
Titel
High-rate synthesis of graphene by a lower cost chemical vapor deposition route
verfasst von
Sebastian Dayou
Brigitte Vigolo
Alexandre Desforges
Jaafar Ghanbaja
Abdul Rahman Mohamed
Publikationsdatum
01.10.2017
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 10/2017
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-017-4034-0

Weitere Artikel der Ausgabe 10/2017

Journal of Nanoparticle Research 10/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.