Skip to main content
Erschienen in: Flow, Turbulence and Combustion 1/2019

03.01.2019

High Resolution Simulation of Diastolic Left Ventricular Hemodynamics Guided by Four-Dimensional Flow Magnetic Resonance Imaging Data

verfasst von: Trung Bao Le, Mohammed S. M. Elbaz, Rob J. Van Der Geest, Fotis Sotiropoulos

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We investigate the diastolic hemodynamics in a patient-specific left ventricle (LV) of a healthy subject using four dimensional flow magnetic resonance imaging (4D-Flow MRI) measurement and numerical simulation. From four dimensional Cardiac Magnetic Resonance (CMR) Imaging data, the kinematics of the endocardium is reconstructed. The endocardial kinematics and the time varying velocity distribution from 4D-Flow MRI at the mitral orifice are prescribed as boundary conditions for the numerical simulation. Both 4D-Flow MRI data and numerical results show the classical formation of the mitral vortex ring (MVR) during E-wave filling. The in-vivo data reveals that a large three-dimensional vortex structure forms near in the mid-level region of LV during diastasis (mid-level vortex). This mid-level vortex is formed simultaneously with the MVR and has not been reported in the literature. Quantitative comparison shows that the computed kinetic energy (KE) evolves in a similar manner to one derived from 4D-Flow MRI data during early E-wave filling. Both computational and measurement data show that the peak KE at E-wave is approximately 8 mJ. Our results suggest that numerical simulation can be used to provide useful hemodynamic data given the inputs from 4D-Flow MRI, which is now available in clinical practice. However, further investigation is needed to understand the formation mechanism of the mid-level vortex and its implication on the end-diastolic flow pattern.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Faludi, R., Szulik, M., D’hooge, J., Herijgers, P., Rademakers, F., Pedrizzetti, G., Voigt, J.U.: Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. J. Thorac. Cardiovasc Surg. 139(6), 1501–1510 (2010)CrossRef Faludi, R., Szulik, M., D’hooge, J., Herijgers, P., Rademakers, F., Pedrizzetti, G., Voigt, J.U.: Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. J. Thorac. Cardiovasc Surg. 139(6), 1501–1510 (2010)CrossRef
2.
Zurück zum Zitat Gharib, M., Rambod, E., Kheradvar, A., Sahn, D.J., Dabiri, J.O.: Optimal vortex formation as an index of cardiac health. Proc. Natl. Acad. Sci. 103(16), 6305–6308 (2006)CrossRef Gharib, M., Rambod, E., Kheradvar, A., Sahn, D.J., Dabiri, J.O.: Optimal vortex formation as an index of cardiac health. Proc. Natl. Acad. Sci. 103(16), 6305–6308 (2006)CrossRef
3.
Zurück zum Zitat Calkoen, E.E., Elbaz, M.S., Westenberg, J.J., Kroft, L.J., Hazekamp, M.G., Roest, A.A., van der Geest, R.J.: Altered left ventricular vortex ring formation by 4-dimensional flow magnetic resonance imaging after repair of atrioventricular septal defects. J. Thorac. Cardiovasc. Surg. 150(5), 1233–1240 (2015)CrossRef Calkoen, E.E., Elbaz, M.S., Westenberg, J.J., Kroft, L.J., Hazekamp, M.G., Roest, A.A., van der Geest, R.J.: Altered left ventricular vortex ring formation by 4-dimensional flow magnetic resonance imaging after repair of atrioventricular septal defects. J. Thorac. Cardiovasc. Surg. 150(5), 1233–1240 (2015)CrossRef
4.
Zurück zum Zitat Elbaz, M.S., van der Geest, R.J., Calkoen, E.E., de Roos, A., Lelieveldt, B.P., Roest, A.A., Westenberg, J.J.: Assessment of viscous energy loss and the association with three-dimensional vortex ring formation in left ventricular inflow: in vivo evaluation using four-dimensional flow MRI. Magn. Reson. Med. 77(2), 794–805 (2017)CrossRef Elbaz, M.S., van der Geest, R.J., Calkoen, E.E., de Roos, A., Lelieveldt, B.P., Roest, A.A., Westenberg, J.J.: Assessment of viscous energy loss and the association with three-dimensional vortex ring formation in left ventricular inflow: in vivo evaluation using four-dimensional flow MRI. Magn. Reson. Med. 77(2), 794–805 (2017)CrossRef
5.
Zurück zum Zitat Stewart, K.C., Charonko, J.C., Niebel, C.L., Little, W.C., Vlachos, P.P.: Left ventricle filling vortex formation is unaffected by diastolic impairment. Am. J. Physiol. Heart Circ. Physiol. 303, H1255–H1262 (2012)CrossRef Stewart, K.C., Charonko, J.C., Niebel, C.L., Little, W.C., Vlachos, P.P.: Left ventricle filling vortex formation is unaffected by diastolic impairment. Am. J. Physiol. Heart Circ. Physiol. 303, H1255–H1262 (2012)CrossRef
6.
Zurück zum Zitat Sotiropoulos, F., Le, T.B., Gilmanov, A.: Fluid mechanics of heart valves and their replacements. Annu. Rev. Fluid Mech. 48, 259–283 (2016) Sotiropoulos, F., Le, T.B., Gilmanov, A.: Fluid mechanics of heart valves and their replacements. Annu. Rev. Fluid Mech. 48, 259–283 (2016)
7.
Zurück zum Zitat Elbaz, M.S., Calkoen, E.E., Westenberg, J.J., Lelieveldt, B.P., Roest, A.A., van der Geest, R.J.: Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis. J. Cardiovasc. Magn. Reson. 16(1), 78 (2014)CrossRef Elbaz, M.S., Calkoen, E.E., Westenberg, J.J., Lelieveldt, B.P., Roest, A.A., van der Geest, R.J.: Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis. J. Cardiovasc. Magn. Reson. 16(1), 78 (2014)CrossRef
8.
Zurück zum Zitat Zajac, J., Eriksson, J., Dyverfeldt, P., Bolger, A.F., Ebbers, T., Carlhäll, C.J.: Turbulent kinetic energy in normal and myopathic left ventricles. J. Magn. Reson. Imaging 41(4), 1021–1029 (2015)CrossRef Zajac, J., Eriksson, J., Dyverfeldt, P., Bolger, A.F., Ebbers, T., Carlhäll, C.J.: Turbulent kinetic energy in normal and myopathic left ventricles. J. Magn. Reson. Imaging 41(4), 1021–1029 (2015)CrossRef
9.
Zurück zum Zitat Carlsson, M., Heiberg, E., Toger, J., Arheden, H.: Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. Am. J. Physiol. Heart Circ. Physiol. 302(4), H893–H900 (2011)CrossRef Carlsson, M., Heiberg, E., Toger, J., Arheden, H.: Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. Am. J. Physiol. Heart Circ. Physiol. 302(4), H893–H900 (2011)CrossRef
10.
Zurück zum Zitat Dyverfeldt, P., Bissell, M., Barker, A.J., Bolger, A.F., Carlhäll, C.J., Ebbers, T., Francios, C.J., Frydrychowicz, A., Geiger, J., Giese, D., Hope, M.D.: 4D flow cardiovascular magnetic resonance consensus statement. J. Cardiovasc. Magn. Reson. 17(1), 72 (2015)CrossRef Dyverfeldt, P., Bissell, M., Barker, A.J., Bolger, A.F., Carlhäll, C.J., Ebbers, T., Francios, C.J., Frydrychowicz, A., Geiger, J., Giese, D., Hope, M.D.: 4D flow cardiovascular magnetic resonance consensus statement. J. Cardiovasc. Magn. Reson. 17(1), 72 (2015)CrossRef
11.
Zurück zum Zitat Okafor, I.U., Santhanakrishnan, A., Chaffins, B.D., Mirabella, L., Oshinski, J.N., Yoganathan, A.P.: Cardiovascular magnetic resonance compatible physical model of the left ventricle for multi-modality characterization of wall motion and hemodynamics. J. Cardiovasc. Magn. Reson. 17(1), 51 (2015)CrossRef Okafor, I.U., Santhanakrishnan, A., Chaffins, B.D., Mirabella, L., Oshinski, J.N., Yoganathan, A.P.: Cardiovascular magnetic resonance compatible physical model of the left ventricle for multi-modality characterization of wall motion and hemodynamics. J. Cardiovasc. Magn. Reson. 17(1), 51 (2015)CrossRef
12.
Zurück zum Zitat Schenkel, T., Malve, M., Reik, M., Markl, M., Jung, B., Oertel, H.: MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart. Ann. Biomed. Eng. 37(3), 503–515 (2009)CrossRef Schenkel, T., Malve, M., Reik, M., Markl, M., Jung, B., Oertel, H.: MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart. Ann. Biomed. Eng. 37(3), 503–515 (2009)CrossRef
13.
Zurück zum Zitat Nguyen, V.T., Wibowo, S.N., Leow, Y.A., Nguyen, H.H., Liang, Z., Leo, H.L.: A patient-specific computational fluid dynamic model for hemodynamic analysis of left ventricle diastolic dysfunctions. Cardiovasc. Eng. Technol. 6(4), 412–429 (2015)CrossRef Nguyen, V.T., Wibowo, S.N., Leow, Y.A., Nguyen, H.H., Liang, Z., Leo, H.L.: A patient-specific computational fluid dynamic model for hemodynamic analysis of left ventricle diastolic dysfunctions. Cardiovasc. Eng. Technol. 6(4), 412–429 (2015)CrossRef
14.
Zurück zum Zitat Chnafa, C., Mendez, S., Nicoud, F.: Image-based large-eddy simulation in a realistic left heart. Comput. Fluids 94, 173–187 (2014)MathSciNetCrossRefMATH Chnafa, C., Mendez, S., Nicoud, F.: Image-based large-eddy simulation in a realistic left heart. Comput. Fluids 94, 173–187 (2014)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Vedula, V., Seo, J.H., Lardo, A.C., Mittal, R.: Effect of trabeculae and papillary muscles on the hemodynamics of the left ventricle. Theor. Comput. Fluid Dyn. 30(1-2), 3–21 (2014)CrossRef Vedula, V., Seo, J.H., Lardo, A.C., Mittal, R.: Effect of trabeculae and papillary muscles on the hemodynamics of the left ventricle. Theor. Comput. Fluid Dyn. 30(1-2), 3–21 (2014)CrossRef
16.
Zurück zum Zitat Acharya, U.R., Joseph, K.P., Kannathal, N., Min, L.C., Suri, J.S.: Heart rate variability. In: Advances in cardiac signal processing, pp 121–165. Springer, Berlin (2007) Acharya, U.R., Joseph, K.P., Kannathal, N., Min, L.C., Suri, J.S.: Heart rate variability. In: Advances in cardiac signal processing, pp 121–165. Springer, Berlin (2007)
17.
Zurück zum Zitat Su, B., San Tan, R., Le Tan, J., Guo, K.W. Q., Zhang, J.M., Leng, S., Zhao, X., Allen, J.C., Zhong, L.: Cardiac MRI based numerical modeling of left ventricular fluid dynamics with mitral valve incorporated. J. Biomech. 49(7), 1199–1205 (2016)CrossRef Su, B., San Tan, R., Le Tan, J., Guo, K.W. Q., Zhang, J.M., Leng, S., Zhao, X., Allen, J.C., Zhong, L.: Cardiac MRI based numerical modeling of left ventricular fluid dynamics with mitral valve incorporated. J. Biomech. 49(7), 1199–1205 (2016)CrossRef
18.
Zurück zum Zitat Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)CrossRef Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)CrossRef
19.
Zurück zum Zitat Westenberg, J.J., Roes, S.D., Ajmone Marsan, N., Binnendijk, N.M., Doornbos, J., Bax, J.J., Reiber, J.H., De Roos, A., van der Geest, R.J.: Mitral valve and tricuspid valve blood flow: accurate quantification with 3D velocity-encoded MR imaging with retrospective valve tracking. Radiology 249(3), 792–800 (2008)CrossRef Westenberg, J.J., Roes, S.D., Ajmone Marsan, N., Binnendijk, N.M., Doornbos, J., Bax, J.J., Reiber, J.H., De Roos, A., van der Geest, R.J.: Mitral valve and tricuspid valve blood flow: accurate quantification with 3D velocity-encoded MR imaging with retrospective valve tracking. Radiology 249(3), 792–800 (2008)CrossRef
20.
Zurück zum Zitat Long, Q., Merrifield, R., Yang, G.Z., Xu, X.Y., Kilner, P.J., Firmin, D.N.: The influence of inflow boundary conditions on intra left ventricle flow predictions. J. Biomech. Eng. 125(6), 922–927 (2003)CrossRef Long, Q., Merrifield, R., Yang, G.Z., Xu, X.Y., Kilner, P.J., Firmin, D.N.: The influence of inflow boundary conditions on intra left ventricle flow predictions. J. Biomech. Eng. 125(6), 922–927 (2003)CrossRef
21.
Zurück zum Zitat Jung, B., Markl, M., Föll, D., Hennig, J.: Investigating myocardial motion by MRI using tissue phase mapping. Eur. J. Cardiothorac. Surg. 29(Supplement_1), S150–S157 (2006)CrossRef Jung, B., Markl, M., Föll, D., Hennig, J.: Investigating myocardial motion by MRI using tissue phase mapping. Eur. J. Cardiothorac. Surg. 29(Supplement_1), S150–S157 (2006)CrossRef
22.
Zurück zum Zitat Chnafa, C., Mendez, S., Nicoud, F.: Image-based simulations show important flow fluctuations in a normal left ventricle: what could be the implications? Ann. Biomed. Eng. 44(11), 3346–3358 (2016)CrossRef Chnafa, C., Mendez, S., Nicoud, F.: Image-based simulations show important flow fluctuations in a normal left ventricle: what could be the implications? Ann. Biomed. Eng. 44(11), 3346–3358 (2016)CrossRef
23.
Zurück zum Zitat Ge, L., Sotiropoulos, F.: A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J. Comput. Phys. 225(2), 1782–1809 (2007)MathSciNetCrossRefMATH Ge, L., Sotiropoulos, F.: A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J. Comput. Phys. 225(2), 1782–1809 (2007)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Le, T. B., Borazjani, I., Kang, S., Sotiropoulos, F.: On the structure of vortex rings from inclined nozzles. J. Fluid Mech. 686, 451–483 (2011) Le, T. B., Borazjani, I., Kang, S., Sotiropoulos, F.: On the structure of vortex rings from inclined nozzles. J. Fluid Mech. 686, 451–483 (2011)
25.
Zurück zum Zitat Gilmanov, A., Le, T.B., Sotiropoulos, F.: A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains. J. Comput. Phys. 300, 814–843 (2015) Gilmanov, A., Le, T.B., Sotiropoulos, F.: A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains. J. Comput. Phys. 300, 814–843 (2015)
26.
Zurück zum Zitat Le, T.B., Troolin, D.R., Amatya, D., Longmire, E.K., Sotiropoulos, F.: Vortex phenomena in sidewall aneurysm hemodynamics: experiment and numerical simulation. Ann. Biomed. Eng. 41(10), 2157–2170 (2013) Le, T.B., Troolin, D.R., Amatya, D., Longmire, E.K., Sotiropoulos, F.: Vortex phenomena in sidewall aneurysm hemodynamics: experiment and numerical simulation. Ann. Biomed. Eng. 41(10), 2157–2170 (2013)
27.
Zurück zum Zitat Le, T.B., Sotiropoulos, F.: Fluid-structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle. J. Comput. Phys. 244, 41–62 (2013) Le, T.B., Sotiropoulos, F.: Fluid-structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle. J. Comput. Phys. 244, 41–62 (2013)
28.
Zurück zum Zitat Le, T.B., Sotiropoulos, F.: On the three-dimensional vortical structure of early diastolic flow in a patient-specific left ventricle. Eur. J. Mech. B. Fluids 35, 20–24 (2012) Le, T.B., Sotiropoulos, F.: On the three-dimensional vortical structure of early diastolic flow in a patient-specific left ventricle. Eur. J. Mech. B. Fluids 35, 20–24 (2012)
29.
Zurück zum Zitat Le, T.B., Sotiropoulos, F., Coffey, D., Keefe, D.: Vortex formation and instability in the left ventricle. Phys. Fluids 24(9), 091110 (2012) Le, T.B., Sotiropoulos, F., Coffey, D., Keefe, D.: Vortex formation and instability in the left ventricle. Phys. Fluids 24(9), 091110 (2012)
30.
Zurück zum Zitat Seo, J.H., Vedula, V., Abraham, T., Lardo, A.C., Dawoud, F., Luo, H., Mittal, R.: Effect of the mitral valve on diastolic flow patterns. Phys. Fluids 26 (12), 121901 (2014)CrossRef Seo, J.H., Vedula, V., Abraham, T., Lardo, A.C., Dawoud, F., Luo, H., Mittal, R.: Effect of the mitral valve on diastolic flow patterns. Phys. Fluids 26 (12), 121901 (2014)CrossRef
31.
Zurück zum Zitat Arvidsson, P.M., Toger, J., Heiberg, E., Carlsson, M., Arheden, H.: Quantification of left and right atrial kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. J. Cardiovasc. Magn. Reson. 15(1), P218 (2013)CrossRef Arvidsson, P.M., Toger, J., Heiberg, E., Carlsson, M., Arheden, H.: Quantification of left and right atrial kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. J. Cardiovasc. Magn. Reson. 15(1), P218 (2013)CrossRef
32.
Zurück zum Zitat Khalighi, A.H., Drach, A., Bloodworth, C.H., Pierce, E.L., Yoganathan, A.P., Gorman, R.C., Gorman, J.H., Sacks, M.S.: Mitral valve chordae tendineae: topological and geometrical characterization. Ann. Biomed. Eng. 45(2), 378–393 (2017)CrossRef Khalighi, A.H., Drach, A., Bloodworth, C.H., Pierce, E.L., Yoganathan, A.P., Gorman, R.C., Gorman, J.H., Sacks, M.S.: Mitral valve chordae tendineae: topological and geometrical characterization. Ann. Biomed. Eng. 45(2), 378–393 (2017)CrossRef
33.
Zurück zum Zitat Pedrizzetti, G., Domenichini, F., Tonti, G.: On the left ventricular vortex reversal after mitral valve replacement. Ann. Biomed. Eng. 38(3), 769–773 (2010)CrossRef Pedrizzetti, G., Domenichini, F., Tonti, G.: On the left ventricular vortex reversal after mitral valve replacement. Ann. Biomed. Eng. 38(3), 769–773 (2010)CrossRef
34.
Zurück zum Zitat Pope. S.B.: Turbulent flows. Cambridge University Press (2000) Pope. S.B.: Turbulent flows. Cambridge University Press (2000)
35.
Zurück zum Zitat Toma, M., Bloodworth, C.H., Einstein, D.R., Pierce, E.L., Cochran, R.P., Yoganathan, A.P., Kunzelman, K.S.: High-resolution subject-specific mitral valve imaging and modeling: experimental and computational methods. Biomech. Model. Mechanobiol. 15(6), 1619–1630 (2016)CrossRef Toma, M., Bloodworth, C.H., Einstein, D.R., Pierce, E.L., Cochran, R.P., Yoganathan, A.P., Kunzelman, K.S.: High-resolution subject-specific mitral valve imaging and modeling: experimental and computational methods. Biomech. Model. Mechanobiol. 15(6), 1619–1630 (2016)CrossRef
36.
Zurück zum Zitat Markl, M., Schnell, S., Wu, C., Bollache, E., Jarvis, K., Barker, A., Robinson, J.D., Rigsby, C.K.: Advanced flow MRI: emerging techniques and applications. Clin. Radiol. 71(8), 779–795 (2016)CrossRef Markl, M., Schnell, S., Wu, C., Bollache, E., Jarvis, K., Barker, A., Robinson, J.D., Rigsby, C.K.: Advanced flow MRI: emerging techniques and applications. Clin. Radiol. 71(8), 779–795 (2016)CrossRef
37.
Zurück zum Zitat Al-Wakeel, N., Fernandes, J. F., Amiri, A., Siniawski, H., Goubergrits, L., Berger, F., Kuehne, T.: Hemodynamic and energetic aspects of the left ventricle in patients with mitral regurgitation before and after mitral valve surgery. J. Magn. Reson. Imaging 42(6), 1705–1712 (2015)CrossRef Al-Wakeel, N., Fernandes, J. F., Amiri, A., Siniawski, H., Goubergrits, L., Berger, F., Kuehne, T.: Hemodynamic and energetic aspects of the left ventricle in patients with mitral regurgitation before and after mitral valve surgery. J. Magn. Reson. Imaging 42(6), 1705–1712 (2015)CrossRef
38.
Zurück zum Zitat Kanski, M., Arvidsson, P.M., Töger, J., Borgquist, R., Heiberg, E., Carlsson, M., Arheden, H.: Left ventricular fluid kinetic energy time curves in heart failure from cardiovascular magnetic resonance 4D flow data. J. Cardiovasc. Magn. Reson. 17(1), 111 (2015)CrossRef Kanski, M., Arvidsson, P.M., Töger, J., Borgquist, R., Heiberg, E., Carlsson, M., Arheden, H.: Left ventricular fluid kinetic energy time curves in heart failure from cardiovascular magnetic resonance 4D flow data. J. Cardiovasc. Magn. Reson. 17(1), 111 (2015)CrossRef
39.
Zurück zum Zitat Seo, J.H., Mittal, R.: Effect of diastolic flow patterns on the function of the left ventricle. Phys. Fluids 25(11), 110801 (2013)CrossRef Seo, J.H., Mittal, R.: Effect of diastolic flow patterns on the function of the left ventricle. Phys. Fluids 25(11), 110801 (2013)CrossRef
40.
Zurück zum Zitat McCarthy, K.P., Ring, L., Rana, B.S.: Anatomy of the mitral valve: understanding the mitral valve complex in mitral regurgitation. Eur. J. Echocardiogr. 11(10), i3–i9 (2010)CrossRef McCarthy, K.P., Ring, L., Rana, B.S.: Anatomy of the mitral valve: understanding the mitral valve complex in mitral regurgitation. Eur. J. Echocardiogr. 11(10), i3–i9 (2010)CrossRef
42.
Zurück zum Zitat Govindarajan, V., Mousel, J., Udaykumar, H.S., Vigmostad, S.C., McPherson, D.D., Kim, H., Chandran, K.B.: Synergy between diastolic mitral valve function and left ventricular flow aids in valve closure and blood transport during systole. Sci. Rep. 8(1), 6187 (2018)CrossRef Govindarajan, V., Mousel, J., Udaykumar, H.S., Vigmostad, S.C., McPherson, D.D., Kim, H., Chandran, K.B.: Synergy between diastolic mitral valve function and left ventricular flow aids in valve closure and blood transport during systole. Sci. Rep. 8(1), 6187 (2018)CrossRef
43.
Zurück zum Zitat Toma, M., Jensen, M.Ø., Einstein, D. R., Yoganathan, A.P., Cochran, R. P., Kunzelman, K.S.: Fluid-structure interaction analysis of papillary muscle forces using a comprehensive mitral valve model with 3D chordal structure. Ann. Biomed. Eng. 44 (4), 942–953 (2016)CrossRef Toma, M., Jensen, M.Ø., Einstein, D. R., Yoganathan, A.P., Cochran, R. P., Kunzelman, K.S.: Fluid-structure interaction analysis of papillary muscle forces using a comprehensive mitral valve model with 3D chordal structure. Ann. Biomed. Eng. 44 (4), 942–953 (2016)CrossRef
44.
Zurück zum Zitat Khalafvand, S.S., Voorneveld, J.D., Muralidharan, A., Gijsen, F.J.H., Bosch, J.G., van Walsum, T., Haak, A., de Jong, N., Kenjeres, S.: Assessment of human left ventricle flow using statistical shape modelling and computational fluid dynamics. J. Biomech. 74, 116–125 (2018)CrossRef Khalafvand, S.S., Voorneveld, J.D., Muralidharan, A., Gijsen, F.J.H., Bosch, J.G., van Walsum, T., Haak, A., de Jong, N., Kenjeres, S.: Assessment of human left ventricle flow using statistical shape modelling and computational fluid dynamics. J. Biomech. 74, 116–125 (2018)CrossRef
45.
Zurück zum Zitat Kamphuis, V.P., Roest, A.A.W., Westenberg, J.J., Elbaz, M.S.: Biventricular vortex ring formation corresponds to regions of highest intraventricular viscous energy loss in a Fontan patient: analysis by 4D Flow MRI. Int. J. Cardiovasc. Imaging 34(3), 441–442 (2018)CrossRef Kamphuis, V.P., Roest, A.A.W., Westenberg, J.J., Elbaz, M.S.: Biventricular vortex ring formation corresponds to regions of highest intraventricular viscous energy loss in a Fontan patient: analysis by 4D Flow MRI. Int. J. Cardiovasc. Imaging 34(3), 441–442 (2018)CrossRef
Metadaten
Titel
High Resolution Simulation of Diastolic Left Ventricular Hemodynamics Guided by Four-Dimensional Flow Magnetic Resonance Imaging Data
verfasst von
Trung Bao Le
Mohammed S. M. Elbaz
Rob J. Van Der Geest
Fotis Sotiropoulos
Publikationsdatum
03.01.2019
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 1/2019
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-018-0003-7

Weitere Artikel der Ausgabe 1/2019

Flow, Turbulence and Combustion 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.