2015 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Surface Science Tools for Nanomaterials Characterization
Scanning tunneling microscopy (STM) is one of the basic techniques for the analysis of surface reconstructions, overlayer growth mechanisms, surface dynamics, and chemistry at the atomic scale. STM is used in physics, chemistry, and biology for high resolution studies of organic and inorganic nanoobjects. This chapter is devoted to STM imaging at the level of individual electron orbitals which can lead to improvement of the spatial resolution in STM experiments down to the subatomic scale and development of chemical-selective imaging of multi-component surfaces.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Binnig G, Rohrer H, Gerber C, Weibel E (1982) Tunneling through a controllable vacuum gap. Appl Phys Lett 40(2):178–180
CrossRef
2.
Binnig G, Rohrer H (1982) Scanning tunnelling microscopy. Helv Phys Acta 55(6):726–735
3.
Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933
CrossRef
4.
Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49(1):57–61
CrossRef
5.
Eigler DM, Schweizer EK (1990) Positioning single atoms with a scanning tunneling microscope. Nature 344(6266):524–526
CrossRef
6.
Crommie MF, Lutz CP, Eigler DM (1993) Confinement of electrons to quantum corrals on a metal surface. Science 262(5131):218–220
CrossRef
7.
Stroscio JA, Celotta RJ (2004) Controlling the dynamics of a single atom in lateral atom manipulation. Science 306(5694):242–247
CrossRef
8.
Walsh MA, Hersam MC (2009) Atomic-scale templates patterned by ultrahigh vacuum scanning tunnelling microscopy on silicon. Annu Rev Phys Chem 60:193–216
CrossRef
9.
Khajetoorians AA, Wiebe J, Chilian B, Wiesendanger R (2012) Realizing all-spin–based logic operations atom by atom. Science 332(6033):1062–1064
CrossRef
10.
Khajetoorians AA, Wiebe J, Chilian B, Lounis S, Blügel S, Wiesendanger R (2012) Atom-by-atom engineering and magnetometry of tailored nanomagnets. Nat Phys 8(6):497–503
CrossRef
11.
Krasnikov SA, Lübben O, Murphy BE, Bozhko SI, Chaika AN, Sergeeva NN, Bulfin B, Shvets IV (2013) Writing with atoms: oxygen adatoms on the MoO
2/Mo(110) surface. Nano Res 6(12):929–937
CrossRef
12.
Stipe BC, Rezaei MA, Ho W (1998) Single-molecule vibrational spectroscopy and microscopy. Science 280(5370):1732–1735
CrossRef
13.
Feenstra RM, Stroscio JA, Tersoff J, Fein AP (1987) Atom-selective imaging of the GaAs(110) surface. Phys Rev Lett 58(12):1192–1195
CrossRef
14.
Schmid M, Stadler H, Varga P (1993) Direct observation of surface chemical order by scanning tunneling microscopy. Phys Rev Lett 70(10):1441–1444
CrossRef
15.
Wiesendanger R, Güntherodt H-J, Güntherodt G, Gambino RJ, Ruf R (1990) Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope. Phys Rev Lett 65(2):247–250
CrossRef
16.
Wiesendanger R, Shvets IV, Bürgler D, Tarrach G, Güntherodt HJ, Coey JMD, Gräser S (1992) Topographic and magnetic-sensitive scanning tunneling microscope study of magnetite. Science 255(5044):583–586
CrossRef
17.
Wiesendanger R (2009) Spin mapping at the nanoscale and atomic scale. Rev Mod Phys 81(4):1495–1550
CrossRef
18.
Binnig G, Rohrer H, Gerber C, Weibel E (1983) (7 × 7) reconstruction on Si(111) resolved in real space. Phys Rev Lett 50(2):120–123
CrossRef
19.
Binnig G, Rohrer H, Ch G, Weibel E (1983) (111) facets as the origin of reconstructed Au(110) surfaces. Surf Sci 131(1):L379–L384
CrossRef
20.
Gawronski H, Mehlhorn M, Morgenstern K (2008) Imaging phonon excitation with atomic resolution. Science 319(5865):930–933
CrossRef
21.
Chaika AN, Molodtsova OV, Zakharov AA, Marchenko D, Sanchez-Barriga J, Varykhalov A, Shvets IV, Aristov VY (2013) Continuous wafer-scale graphene on cubic-SiC(001). Nano Res 6(8):562–570
CrossRef
22.
Chaika AN, Nazin SS, Semenov VN, Bozhko SI, Lübben O, Krasnikov SA, Radican K, Shvets IV (2010) Selecting the tip electron orbital for scanning tunneling microscopy imaging with sub-ångström lateral resolution. EPL 92(4):46003
CrossRef
23.
Chaika AN, Nazin SS, Semenov VN, Orlova NN, Bozhko SI, Lübben O, Krasnikov SA, Radican K, Shvets IV (2013) High resolution STM imaging with oriented single crystalline tips. Appl Surf Sci 267:219–223
CrossRef
24.
Chaika AN, Orlova NN, Semenov VN, Postnova EY, Krasnikov SA, Lazarev MG, Chekmazov SV, Aristov VY, Glebovsky VG, Bozhko SI, Shvets IV (2014) Fabrication of [001]-oriented tungsten tips for high resolution scanning tunneling microscopy. Sci Rep 4:3742. doi:10.1038/srep03742
CrossRef
25.
Herz M, Giessibl FJ, Mannhart J (2003) Probing the shape of atoms in real space. Phys Rev B 68(4):045301
CrossRef
26.
Chaika AN, Semenov VN, Nazin SS, Bozhko SI, Murphy S, Radican K, Shvets IV (2007) Atomic row doubling in the STM images of Cu(014)-O obtained with MnNi tips. Phys Rev Lett 98(20):206101
CrossRef
27.
Murphy S, Radican K, Shvets IV, Chaika AN, Semenov VN, Nazin SS, Bozhko SI (2007) Asymmetry effects in atomically resolved STM images of Cu(014)-O and W(100)-O surfaces measured with MnNi tips. Phys Rev B 76(24):245423
CrossRef
28.
Chaika AN, Myagkov AN (2008) Imaging atomic orbitals in STM experiments on a Si(111)-(7 × 7) surface. Chem Phys Lett 453(4–6):217–221
CrossRef
29.
Cren T, Serrier-Garcia L, Debontridder F, Roditchev D (2011) Vortex fusion and giant vortex states in confined superconducting condensates. Phys Rev Lett 107(9):097202
CrossRef
30.
Hembacher S, Giessibl FJ, Mannhart J, Quate CF (2005) Local spectroscopy and atomic imaging of tunneling current, forces, and dissipation on graphite. Phys Rev Lett 94(5):056101
CrossRef
31.
Grim PCM, De Feyter S, Gesquière A, Vanoppen P, Rücker M, Valiyaveettil S, Moessner G, Müllen K, De Schryver FC (1997) Submolecularly resolved polymerization of diacetylene molecules on the graphite surface observed with scanning tunneling microscopy. Angew Chem Int Ed Engl 36(23):2601–2603
CrossRef
32.
den Boer D, Li M, Habets T, Iavicoli P, Rowan AE, Nolte RJM, Speller S, Amabilino DB, De Feyter S, Elemans JAAW (2013) Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface. Nat Chem 5(7):621–627
CrossRef
33.
Chen CJ (1988) Theory of scanning tunneling spectroscopy. J Vac Sci Technol A 6(2):319–322
CrossRef
34.
Chaika AN, Nazin SS, Bozhko SI (2008) Selective STM imaging of oxygen-induced Cu(115) surface reconstructions with tungsten probes. Surf Sci 602(12):2078–2088
CrossRef
35.
Binnig G, Rohrer H (1987) Scanning tunneling microscopy – from birth to adolescence. Rev Mod Phys 59(3):615–625
CrossRef
36.
Jurczyszyn L, Mingo N, Flores F (1998) Influence of the atomic and electronic structure of the tip on STM images and STS spectra. Surf Sci 402–404:459–463
CrossRef
37.
Nagahara LA, Thundat T, Lindsay SM (1989) Preparation and characterization of STM tips for electrochemical studies. Rev Sci Instrum 60(10):3128–3130
CrossRef
38.
Iwami M, Uehara Y, Ushioda S (1998) Preparation of silver tips for scanning tunneling microscopy imaging. Rev Sci Instrum 69(11):4010–4011
CrossRef
39.
Ibe JP, Bey PP, Brandow SL, Brizzolara RA, Burnham NA, DiLella DP, Lee KP, Marrian CRK, Colton RJ (1990) On the electrochemical etching of tips for scanning tunneling microscopy. J Vac Sci Technol 8(4):3570–3575
CrossRef
40.
Nunes G, Amer NM (1993) Atomic resolution scanning tunneling microscopy with a gallium arsenide tip. Appl Phys Lett 63(13):1851–1853
CrossRef
41.
Prins MWJ, Jansen R, Van Kempen H (1996) Spin-polarized tunneling with GaAs tips in scanning tunneling microscopy. Phys Rev B 53(12):8105–8113
CrossRef
42.
Sutter P, Zahl P, Sutter E, Bernard JE (2003) Energy-filtered scanning tunneling microscopy using a semiconductor tip. Phys Rev Lett 90(16):166101
CrossRef
43.
Kohen A, Noat Y, Proslier T, Lacaze E, Aprili M, Sacks W, Roditchev D (2005) Fabrication and characterization of scanning tunneling microscopy superconducting Nb tips having highly enhanced critical fields. Physica C 419(1–2):18–24
CrossRef
44.
Murphy S, Osing J, Shvets IV (1999) Atomically resolved p(3 × 1) reconstruction on the W(100) surface imaged with magnetic tips. J Magn Magn Mater 198–199:686–688
CrossRef
45.
Murphy S, Osing J, Shvets IV (1999) Fabrication of submicron-scale manganese-nickel tips for spin-polarized STM studies. Appl Surf Sci 144–145:497–500
CrossRef
46.
Wiesendanger R, Bürgler D, Tarrach G, Schaub T, Hartmann U, Güntherodt H-J, Shvets IV, Coey JMD (1991) Recent advances in scanning tunneling microscopy involving magnetic probes and samples. Appl Phy A-Materials Sci Process 53(5):349–355
CrossRef
47.
Shvets IV, Wiesendanger R, Bürgler D, Tarrach G, Günterodt H-J, Coey JMD (1992) Progress towards spin-polarized scanning tunneling microscopy. J Appl Phys 71(11):5489–5499
CrossRef
48.
Schlenhoff A, Krause S, Herzog G, Wiesendanger R (2010) Bulk Cr tips with full spatial magnetic sensitivity for spin-polarized scanning tunneling microscopy. Appl Phys Lett 97(8):083104
CrossRef
49.
Romming N, Hanneken C, Menzel M, Bickel JE, Wolter B, von Bergmann K, Kubetzka A, Wiesendanger R (2013) Writing and deleting single magnetic skyrmions. Science 341(6146):636–639
CrossRef
50.
Bode M (2003) Spin-polarized scanning tunnelling microscopy. Rep Prog Phys 66(4):523–582
CrossRef
51.
Decker R, Brede J, Atodiresei N, Caciuc V, Blügel S, Wiesendanger R (2013) Atomic-scale magnetism of cobalt-intercalated graphene. Phys Rev B 87(4):041403(R)
CrossRef
52.
Hofmann T, Welker J, Giessibl FJ (2010) Preparation of light-atom tips for scanning probe microscopy by explosive delamination. J Vac Sci Technol B 28(3):C4E28
CrossRef
53.
Kaneko R, Oguchi S (1990) Ion-implanted diamond tip for a scanning tunneling microscope. Jpn J Appl Phys 29(9):1854–1855
CrossRef
54.
Visser EP, Gerritsen JW, van Enckevort WJP, van Kempen H (1992) Tips for scanning tunneling microscopy made of monocrystalline, semiconducting, chemical vapor deposited diamond. Appl Phys Lett 60(26):3232–3234
CrossRef
55.
Albin S, Zheng J, Cooper JB, Fu W, Lavarias AC (1997) Microwave plasma chemical vapor deposited diamond tips for scanning tunneling microscopy. Appl Phys Lett 71(19):2848–2850
CrossRef
56.
Meyer T, Klemenc M, von Kanel H, Ph N (2000) Diamond tips in low temperature scanning tunnelling microscopy. Surf Sci 470(1–2):164–170
CrossRef
57.
Grushko V, Lubben O, Chaika AN, Novikov N, Mitskevich E, Chepugov A, Lysenko O, Murphy BE, Krasnikov SA, Shvets IV (2014) Atomically resolved STM imaging with a diamond tip: simulation and experiment. Nanotechnology 25(2):025706
CrossRef
58.
Yu ZQ, Wang CM, Du Y, Thevuthasan S, Lyubinetsky I (2008) Reproducible tip fabrication and cleaning for UHV STM. Ultramicroscopy 108(9):873–877
CrossRef
59.
Fink H-W (1986) Mono-atomic tips for scanning tunneling microscopy. IBM J Res Dev 30(5):460–465
CrossRef
60.
Stroscio JA, Feenstra RM, Fein PA (1987) Local density and long-range screening of adsorbed oxygen atoms on the GaAs(110) surface. Phys Rev Lett 58(16):1668–1671
CrossRef
61.
Neddermeyer H, Drechsler M (1988) Electric field-induced changes of W(110) and W(111) tips. J Microsc 152(2):459–466
CrossRef
62.
Wintterlin J, Wiechers J, Brune H, Gritsch T, Hofer H, Behm RJ (1989) Atomic-resolution imaging of close-packed metal surfaces by scanning tunneling microscopy. Phys Rev Lett 62(1):59–62
CrossRef
63.
Chen CJ (1991) Microscopic view of scanning tunneling microscopy. J Vac Sci Technol A 9(1):44–50
CrossRef
64.
Heike S, Hashizume T, Wada Y (1996) In situ control and analysis of the scanning tunneling microscope tip by formation of sharp needles on the Si sample and W tip. J Vac Sci Technol B 14(2):1522–1526
CrossRef
65.
Castellanos-Gomez A, Rubio-Bollinger G, Garnica M, Barja S, Vazquez de Parga AL, Miranda R, Agraıt N (2012) Highly reproducible low temperature scanning tunnelling microscopy and spectroscopy with in situ prepared tips. Ultramicroscopy 122:1–5
CrossRef
66.
Biegelsen DK, Ponce FA, Tramontana JC, Koch SM (1987) Ion milled tips for scanning tunneling microscopy. Appl Phys Lett 50(11):696–698
CrossRef
67.
Biegelsen DK, Ponce FA, Tramontana JC (1989) Simple ion milling preparation of <111> tungsten tips. Appl Phys Lett 54(13):1223–1225
CrossRef
68.
Morishita S, Okuyama F (1991) Sharpening of monocrystalline molybdenum tips by means of inert-gas ion sputtering. J Vac Sci Technol A 9(1):167–169
CrossRef
69.
Eltsov KN, Shevlyuga VM, Yurov VY, Kvit AV, Kogan MS (1996) Sharp tungsten tips prepared for STM study of deep nanostructures in UHV. Phys Low-Dim Struct 9–10:7–14
70.
Hansma PK, Tersoff J (1987) Scanning tunneling microscopy. J Appl Phys 61(2):R1–R23
CrossRef
71.
Demuth JE, Koehler U, Hamers RJ (1988) The STM learning curve and where it may take us. J Microsc 152(2):299–316
CrossRef
72.
Kuk Y, Silverman PJ (1986) Role of tip structure in scanning tunneling microscopy. Appl Phys Lett 48(23):1597–1599
CrossRef
73.
Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384(6605):147–150
CrossRef
74.
Kelly KF, Sarkar D, Hale GD, Oldenburg SJ, Halas NJ (1996) Threefold electron scattering on graphite observed with C60-adsorbed STM tips. Science 273(5280):1371–1373
CrossRef
75.
Repp J, Meyer G, Stojkovic SM, Gourdon A, Joachim C (2005) Molecules on insulating films: scanning tunneling microscopy imaging of individual molecular orbitals. Phys Rev Lett 94(2):026803
CrossRef
76.
Deng ZT, Lin H, Ji W, Gao L, Lin X, Cheng ZH, He XB, Lu JL, Shi DX, Hofer WA, Gao H-J (2006) Selective analysis of molecular states by functionalized scanning tunneling microscopy tips. Phys Rev Lett 96(15):156102
CrossRef
77.
Temirov R, Soubatch S, Neucheva O, Lassise AC, Tautz FS (2008) A novel method achieving ultra-high geometrical resolution in scanning tunnelling microscopy. New J Phys 10(5):053012
CrossRef
78.
Weiss C, Wagner C, Kleimann C, Rohlfing M, Tautz FS, Temirov R (2010) Imaging Pauli repulsion in scanning tunneling microscopy. Phys Rev Lett 105(8):086103
CrossRef
79.
Gross L, Moll N, Mohn F, Curioni A, Meyer G, Hanke F, Persson M (2011) High-resolution molecular orbital imaging using a
p-wave STM tip. Phys Rev Lett 107(8):086101
CrossRef
80.
Cheng Z, Du S, Guo W, Gao L, Deng Z, Jiang N, Guo H, Tang H, Gao H-J (2011) Direct imaging of molecular orbitals of metal phthalocyanines on metal surfaces with an O
2-functionalized tip of a scanning tunneling microscope. Nano Res 4(6):523–530
CrossRef
81.
Martinez JI, Abad E, Gonzalez C, Flores F, Ortega J (2012) Improvement of scanning tunneling microscopy resolution with H-sensitized tips. Phys Rev Lett 108(24):246102
CrossRef
82.
Mohn F, Gross L, Moll N, Meyer G (2012) Imaging the charge distribution within a single molecule. Nat Nanotechnol 7(4):227–231
CrossRef
83.
Tromp RM, Van Loenen EJ, Demuth JE, Lang ND (1988) Tip electronic structure in scanning tunneling microscopy. Phys Rev B 37(15):9042–9045
CrossRef
84.
Chiutu C, Sweetman AM, Lakin AJ, Stannard A, Jarvis S, Kantorovich L, Dunn JL, Moriarty P (2012) Precise orientation of a single C60 molecule on the tip of a scanning probe microscope. Phys Rev Lett 108(26):268302
CrossRef
85.
Lakin AJ, Chiutu C, Sweetman AM, Moriarty P, Dunn JL (2013) Recovering molecular orientation from convoluted orbitals. Phys Rev B 88(3):035447
CrossRef
86.
Fink H-W, Stocker W, Schmid H (1990) Coherent point source electron beams. J Vac Sci Technol B 8(8):1323–1324
CrossRef
87.
Ottaviano L, Lozzi L, Santucci S (2003) Scanning Auger microscopy study of W tips for scanning tunneling microscopy. Rev Sci Instrum 74(7):3368
CrossRef
88.
Kirakosian A, Bennewitz R, Crain JN, Fauster T, Lin J-L, Petrovykh DY, Himpsel FJ (2001) Atomically accurate Si grating with 5.73 nm period. Appl Phys Lett 79(11):1608–1610
CrossRef
89.
Chaika AN, Fokin DA, Bozhko SI, Ionov AM, Debontridder F, Dubost V, Cren T, Roditchev D (2009) Regular stepped structures on clean Si(hhm)-7 × 7 surfaces. J Appl Phys 105(3):034304
CrossRef
90.
Chaika AN, Fokin DA, Bozhko SI, Ionov AM, Debontridder F, Dubost V, Cren T, Roditchev D (2009) Atomic structure of a regular Si(223) triple step staircase. Surf Sci 603(5):752–761
CrossRef
91.
Chaika AN, Semenov VN, Glebovskiy VG, Bozhko SI (2009) Scanning tunneling microscopy with single crystal W[001] tips: high resolution studies of Si(557)5 × 5 surface. Appl Phys Lett 95(17):173107
CrossRef
92.
Takayanagi K, Tanishiro Y, Takahashi M, Takahashi S (1985) Structural analysis of Si(111)-(7 × 7) by UHV-transmission electron diffraction and microscopy. J Vac Sci Technol A 3(3):1502–1506
CrossRef
93.
Wang YL, Gao H-J, Guo HM, Liu HW, Batyrev IG, McMahon WE, Zhang SB (2004) Tip size effect on the appearance of a STM image for complex surfaces: theory versus experiment for Si(111)-(7 × 7). Phys Rev B 70(7):073312
CrossRef
94.
Hamers RJ, Tromp RM, Demuth JE (1986) Surface electronic structure of Si(111)-(7 × 7) resolved in real space. Phys Rev Lett 56(18):1972–1975
CrossRef
95.
Tromp RM, Hamers RJ, Demuth JE (1986) Atomic and electronic contributions to Si(111)-(7 × 7) scanning tunneling-microscopy images. Phys Rev B 34(2):1388–1391
CrossRef
96.
Hamers RJ, Tromp RM, Demuth JE (1987) Electronic and geometric structure of Si(111)-(7 × 7) and Si(001) surfaces. Surf Sci 181(1–2):346–355
CrossRef
97.
Paz O, Brihuega I, Gomez-Rodriguez JM, Soler JM (2005) Tip and surface determination from experiments and simulations of scanning tunneling microscopy and spectroscopy. Phys Rev Lett 94(5):056103
CrossRef
98.
Dubois M, Perdigao L, Delerue C, Allan G, Grandidier B, Deresme D, Stievenard D (2005) Scanning tunneling microscopy and spectroscopy of reconstructed Si(100) surfaces. Phys Rev B 71(16):165322
CrossRef
99.
Hamers RJ, Tromp RM, Demuth JE (1987) Scanning tunneling microscopy of Si(001). Phys Rev B 34(8):5343–5357
CrossRef
100.
Wolkow RA (1992) Direct observation of an increase in buckled dimmers on Si(001) at low temperatures. Phys Rev Lett 68(17):2636–2639
CrossRef
101.
Garleff JK, Wenderoth M, Sauthoff K, Ulbrich RG, Rohlfing M (2004) 2 × 1 reconstructed Si(111) surface: STM experiments versus ab initio calculations. Phys Rev B 70(24):245424
CrossRef
102.
Zotti LA, Hofer WA, Giessibl FJ (2006) Electron scattering in scanning probe microscopy experiments. Chem Phys Lett 420(1–3):177–182
CrossRef
103.
Hallmark V, Chiang S, Rabalt J, Swalen J, Wilson R (1987) Observation of atomic corrugation on Au(111) by scanning tunneling microscopy. Phys Rev Lett 59(25):2879–2882
CrossRef
104.
Wintterlin J, Brune H, Hofer H, Behm R (1988) Atomic scale characterization of oxygen adsorbates on Al(111) by scanning tunneling microscopy. Appl Phys A 47(1):99–102
CrossRef
105.
Clarke ARH, Pethica JB, Nieminen JA, Besenbacher F, Lægsgaard E, Stensgaard I (1996) Quantitative scanning tunneling microscopy at atomic resolution: influence of forces and tip configuration. Phys Rev Lett 76(8):1276–1279
CrossRef
106.
Bobrov K, Mayne AJ, Dujardin G (2001) Atomic-scale imaging of insulating diamond through resonant electron injection. Nature 413(6856):616–619
CrossRef
107.
Castell MR, Dudarev SL, Briggs GAD, Sutton AP (1999) Unexpected differences in the surface electronic structure of NiO and CoO observed by STM and explained by first-principles theory. Phys Rev B 59(11):7342–7345
CrossRef
108.
Repp J, Meyer G, Paavilainen S, Olsson FE, Persson M (2005) Scanning tunneling spectroscopy of Cl vacancies in NaCl films: strong electron-phonon coupling in double-barrier tunneling junctions. Phys Rev Lett 95(22):225503
CrossRef
109.
Olsson FE, Paavilainen S, Persson M, Repp J, Meyer G (2007) Multiple charge states of Ag atoms on ultrathin NaCl films. Phys Rev Lett 98(17):176803
CrossRef
110.
Olsson FE, Persson M, Repp J, Meyer G (2005) Scanning tunneling microscopy and spectroscopy of NaCl overlayers on the stepped Cu(311) surface: experimental and theoretical study. Phys Rev B 71(7):075419
CrossRef
111.
Schoiswohl J, Agnoli S, Xu B, Surnev S, Sambi M, Ramsey MG, Granozzi G, Netzer FP (2005) Growth and thermal behaviour of NiO nanolayers on Pd(100). Surf Sci 599(1–3):1–13
CrossRef
112.
Caffio M, Atrei A, Cortigiani B, Rovida G (2006) STM study of the nanostructures prepared by deposition of NiO on Ag(001). J Phys Condens Matter 18:2379–2384
CrossRef
113.
Steurer W, Allegretti F, Surnev S, Barcaro G, Sementa L, Negreiros F, Fortunelli A, Netzer FP (2011) Metamorphosis of ultrathin Ni oxide nanostructures on Ag(100). Phys Rev B 84(11):115446
CrossRef
114.
Barth JV, Costantini G, Kern K (2005) Engineering atomic and molecular nanostructures at surfaces. Nature 437(7059):671–679
CrossRef
115.
Gambardella P, Stepanow S, Dmitriev A, Honolka J, de Groot FMF, Lingenfelder M, Gupta SS, Sarma DD, Bencok P, Stanescu S, Clair S, Pons S, Lin N, Seitsonen AP, Brune H, Barth JV, Kern K (2009) Supramolecular control of the magnetic anisotropy in two-dimensional high-spin Fe arrays at a metal interface. Nat Mater 8(3):189–193
CrossRef
116.
Krasnikov SA, Beggan JP, Sergeeva NN, Senge MO, Cafolla AA (2009) Ni(II) porphine nanolines grown on a Ag(111) surface at room temperature. Nanotechnology 20(13):135301
CrossRef
117.
Moriarty PJ (2010) Fullerene adsorption on semiconductor surfaces. Surf Sci Rep 65(7):175–227
CrossRef
118.
Krasnikov SA, Doyle CM, Sergeeva NN, Preobrajenski AB, Vinogradov NA, Sergeeva YN, Zakharov AA, Senge MO, Cafolla AA (2011) Formation of extended covalently bonded Ni porphyrin networks on the Au(111) surface. Nano Res 4(4):376–384
CrossRef
119.
Krasnikov SA, Bozhko SI, Radican K, Lubben O, Murphy BE, Vadapoo SR, Han-Chun W, Abid M, Semenov VN, Shvets IV (2011) Self-assembly and ordering of C60 on the WO2/W(110) surface. Nano Res 4(2):194–203
CrossRef
120.
Bozhko SI, Krasnikov SA, Lubben O, Murphy BE, Radican K, Semenov VN, Wu H-C, Bulfin B, Shvets IV (2011) Rotational transitions in a C60 monolayer on the WO2/W(110) surface. Phys Rev B 84(19):195412
CrossRef
121.
Mugarza A, Krull C, Robles R, Stepanow S, Ceballos G, Gambardella P (2011) Spin coupling and relaxation inside molecule–metal contacts. Nat Commun 2:490. doi:10.1038/ncomms1497
CrossRef
122.
Swart I, Sonnleitner T, Repp J (2011) Charge state control of molecules reveals modification of the tunneling barrier with intramolecular contrast. Nano Lett 11(4):1580–1584
CrossRef
123.
Beggan JP, Krasnikov SA, Sergeeva NN, Senge MO, Cafolla AA (2012) Control of the axial coordination of a surface-confined manganese(III) porphyrin complex. Nanotechnology 23(23):235606
CrossRef
124.
Murphy BE, Krasnikov SA, Cafolla AA, Sergeeva NN, Vinogradov NA, Beggan JP, Lübben O, Senge MO, Shvets IV (2012) Growth and ordering of Ni(II) diphenylporphyrin monolayers on Ag(111) and Ag/Si(111) studied by STM and LEED. J Phys Condens Matter 24(4):045005
CrossRef
125.
Bazarnik M, Brede J, Decker R, Wiesedanger R (2013) Tailoring molecular self-assembly of magnetic phthalocyanine molecules on Fe- and Co-intercalated graphene. ACS Nano 7(12):11341–11349
CrossRef
126.
Garnica M, Stradi D, Barja S, Calleja F, Díaz C, Alcamí M, Martín N, Vázquez de Parga AL, Martín F, Miranda R (2013) Long-range magnetic order in a purely organic 2D layer adsorbed on epitaxial graphene. Nat Phys 9(6):368–374
CrossRef
127.
Swart I, Gross L, Liljeroth P (2011) Single-molecule chemistry and physics explored by low-temperature scanning probe microscopy. Chem Commun 47(32):9011–9023
CrossRef
128.
Tersoff J, Hamann DR (1983) Theory and application for the scanning tunneling microscope. Phys Rev Lett 50(25):1998–2001
CrossRef
129.
Tersoff J, Hamann DR (1985) Theory of the scanning tunneling microscope. Phys Rev B 31(2):805–813
CrossRef
130.
Hofer WA, Garcia-Lekue A, Brune H (2004) The role of surface elasticity in giant corrugations observed by scanning tunneling microscopes. Chem Phys Lett 397(4–6):354–359
CrossRef
131.
Tersoff J, Lang ND (1990) Tip-dependent corrugation of graphite in scanning tunneling microscopy. Phys Rev Lett 65(9):1132–1135
CrossRef
132.
Chen CJ (1990) Origin of atomic resolution on metal surfaces in scanning tunneling microscopy. Phys Rev Lett 65(4):448–451
CrossRef
133.
Chen CJ (1990) Tunneling matrix elements in three-dimensional space: the derivative rule and the sum rule. Phys Rev B 42(14):8841–8857
CrossRef
134.
Chen CJ (1992) Effects of m ≠ 0 tip states in scanning tunneling microscopy: the explanation of corrugation reversal. Phys Rev Lett 69(11):1656–1659
CrossRef
135.
Sacks W (2000) Tip orbitals and the atomic corrugation of metal surfaces in scanning tunneling microscopy. Phys Rev B 61(11):7656–7668
CrossRef
136.
Suominen I, Nieminen J, Markiewicz RS, Bansil A (2011) Effect of orbital symmetry of the tip on scanning tunneling spectra of Bi
2Sr
2CaCu
2O
8+δ. Phys Rev B 84(1):014528
CrossRef
137.
Polok M, Fedorov DV, Bagrets A, Zahn P, Mertig I (2011) Evaluation of conduction eigenchannels of an adatom probed by an STM tip. Phys Rev B 83(24):245426
CrossRef
138.
Choi H, Longo RC, Huang M, Randall JN, Wallace RM, Cho K (2013) A density-functional theory study of tip electronic structures in scanning tunneling microscopy. Nanotechnology 24(10):105201
CrossRef
139.
Wright CA, Solares SD (2013) Computational study of tip apex symmetry characterization in high-resolution atomic force microscopy. J Phys D Appl Phys 46(15):155307
CrossRef
140.
Hembacher S, Giessibl FJ, Mannhart J (2004) Force microscopy with light-atom probes. Science 305(5682):380–383
CrossRef
141.
Wright CA, Solares SD (2011) On mapping subångström electron clouds with force microscopy. Nano Lett 11(11):5026–5033
CrossRef
142.
Wright CA, Solares SD (2012) Imaging of subatomic electron cloud interactions: effect of higher harmonics processing in noncontact atomic force microscopy. Appl Phys Lett 100(16):163104
CrossRef
143.
Binnig G, Garcia N, Rohrer H, Soler JM, Flores F (1984) Electron-metal-surface interaction potential with vacuum tunneling: observation of the image force. Phys Rev B 30(8):4816–4818
CrossRef
144.
Zheng NJ, Tsong IST (1990) Resonant-tunneling theory of imaging close-packed metal surfaces by scanning tunneling microscopy. Phys Rev B 41(5):2671–2677
CrossRef
145.
Hofer WA, Foster AS, Shluger AL (2003) Theories of scanning probe microscopes at the atomic scale. Rev Mod Phys 75(4):1287–1331
CrossRef
146.
Hofer WA (2003) Challenges and errors: interpreting high resolution images in scanning tunneling microscopy. Prog Surf Sci 71(5–8):147–183
CrossRef
147.
Jelınek P, Shvec M, Pou P, Perez R, Chab V (2008) Tip-induced reduction of the resonant tunneling current on semiconductor surfaces. Phys Rev Lett 101(17):176101
CrossRef
148.
Bryant A, Smith DPE, Binnig G, Harrison WA, Quate CF (1986) Anomalous distance dependence in scanning tunneling microscopy. Appl Phys Lett 49(15):936–938
CrossRef
149.
Bode M, Pascal R, Wiesendanger R (1996) Distance-dependent STM-study of the W(110)/C-R(15 × 3) surface. Z Phys B 101(1):103–107
CrossRef
150.
Wiesendanger R, Bode M, Pascal R, Allers W, Schwarz UD (1996) Issues of atomic-resolution structure and chemical analysis by scanning probe microscopy and spectroscopy. J Vac Sci Technol A 14(3):1161–1167
CrossRef
151.
Klijn J, Sacharow L, Meyer C, Blugel S, Morgenstern M, Wiesendanger R (2003) STM measurements on the InAs(110) surface directly compared with surface electronic structure calculations. Phys Rev B 68(20):205327
CrossRef
152.
Calleja F, Arnau A, Hinarejos JJ, Vazquez de Parga AL, Hofer WA, Echenique PM, Miranda R (2004) Contrast reversal and shape changes of atomic adsorbates measured with scanning tunneling microscopy. Phys Rev Lett 92(20):206101
CrossRef
153.
Blanco JM, González C, Jelínek P, Ortega J, Flores F, Pérez R, Rose M, Salmeron M, Méndez J, Wintterlin J, Ertl G (2005) Origin of contrast in STM images of oxygen on Pd(111) and its dependence on tip structure and tunneling parameters. Phys Rev B 71(11):113402
CrossRef
154.
Woolcot T, Teobaldi G, Pang CL, Beglitis NS, Fisher AJ, Hofer WA, Thornton G (2012) Scanning tunneling microscopy contrast mechanisms for TiO
2. Phys Rev Lett 109(15):156105
CrossRef
155.
Mönig H, Todorovic M, Baykara MZ, Schwendemann TC, Rodrigo L, Altman EI, Pérez R, Schwarz UD (2013) Understanding scanning tunneling microscopy contrast mechanisms on metal oxides: a case study. ACS Nano 7(11):10233–10244
CrossRef
156.
Ondracek M, Pou P, Rozsıval V, Gonzalez C, Jelınek P, Perez R (2011) Forces and currents in carbon nanostructures: are we imaging atoms? Phys Rev Lett 106(17):176101
CrossRef
157.
Ondracek M, Gonzalez C, Jelınek P (2012) Reversal of atomic contrast in scanning probe microscopy on (111) metal surfaces. J Phys Condens Matter 24(8):084003
CrossRef
158.
Whangbo M-H, Liang W, Ren J, Magonov SN, Wawkuschewski AJ (1994) Structural and electronic properties of graphite and graphite intercalation compounds MCs (M = K, Rb, Cs) governing their scanning tunneling microscopy images. J Phys Chem 98(31):7602–7607
CrossRef
159.
Teobaldi G, Inami E, Kanasaki J, Tanimura K, Shluger AL (2012) Role of applied bias and tip electronic structure in the scanning tunneling microscopy imaging of highly oriented pyrolytic graphite. Phys Rev B 85(8):085433
CrossRef
160.
Chaika AN, Bozhko SI (2005) Atomic structure of the Cu(410)-O surface: STM visualization of oxygen and copper atoms. JETP Lett 82(7):416–420
CrossRef
161.
Ternes M, Gonzalez C, Lutz CP, Hapala P, Giessibl FJ, Jelınek P, Heinrich AJ (2011) Interplay of conductance, force, and structural change in metallic point contacts. Phys Rev Lett 106(1):016802
CrossRef
162.
Scheer E, Agrait N, Cuevas JC, Yeyati AL, Ludoph B, Martin-Rodero A, Bollinger GR, Van Ruitenbeek JM, Urbina C (1998) The signature of chemical valence in the electrical conduction through a single-atom contact. Nature 394(6689):154–157
CrossRef
163.
Neel N, Kröger J, Limot L, Palotas K, Hofer WA, Berndt R (2007) Conductance and Kondo effect in a controlled single-atom contact. Phys Rev Lett 98(1):016801
CrossRef
164.
Dias LG, Leitão AA, Achete CA, Blum R-P, Niehus H, Capaz RB (2007) Chemical identification in the Cu
3Au(100) surface using scanning tunneling microscopy and first-principles calculations. Surf Sci 601(23):5540–5545
CrossRef
165.
Ruan L, Besenbacher F, Stensgaard I, Laegsgaard E (1993) Atom resolved discrimination of chemically different elements on metal surfaces. Phys Rev Lett 70(26):4079–4082
CrossRef
166.
Diebold U, Li S-C, Schmid M (2010) Oxide surface science. Annu Rev Phys Chem 61:129–148
CrossRef
167.
Knudsen J, Merte LR, Peng G, Vang RT, Resta A, Laegsgaard E, Andersen JN, Mavrikakis M, Besenbacher F (2010) Low-temperature, CO oxidation on Ni(111) and on a Au/Ni(111) surface alloy. ACS Nano 4(8):4380–4387
CrossRef
168.
Baykara MZ, Todorović M, Mönig H, Schwendemann TC, Ünverdi Ö, Rodrigo L, Altman EI, Pérez R, Schwarz UD (2013) Atom-specific forces and defect identification on surface-oxidized Cu(100) with combined 3D-AFM and STM measurements. Phys Rev B 87(15):155414
CrossRef
169.
Gauthier Y, Dolle P, Baudoing-Savois R, Hebenstreit W, Platzgummer E, Schmid M, Varga P (1998) Chemical ordering and reconstruction of Pt
25Co
75(100): an LEED/STM study. Surf Sci 396(1–3):137–155
CrossRef
170.
Hebenstreit W, Ritz G, Schmid M, Biedermann A, Varga P (1997) Segregation and reconstructions of Pt
xNi
1-x(100). Surf Sci 388(1–3):150–161
CrossRef
171.
Hebenstreit ELD, Hebenstreit W, Schmid P, Varga P (1999) Pt
25Rh
75(111), (110), and (100) studied by scanning tunneling microscopy with chemical contrast. Surf Sci 441(2–3):441–453
CrossRef
172.
Schmid M, Varga P (2002) Segregation and surface chemical ordering – an experimental view on the atomic scale, Chapter 4. In: Woodruff DP (ed) The chemical physics of solid surfaces, vol 10, Surface alloys and Alloy surfaces. Elsevier, Amsterdam, 2002
173.
Yashina LV, Püttner R, Volykhov AA, Stojanov P, Riley J, Vassiliev SY, Chaika AN, Dedyulin SN, Tamm ME, Vyalikh DV, Belogorokhov AI (2012) Atomic geometry and electron structure of the GaTe(
\( 10\overline{2} \)) surface. Phys Rev B 85(7):075409
CrossRef
174.
Hofer WA, Ritz G, Hebenstreit W, Schmid M, Varga P, Redinger J, Podloucky R (1998) Scanning tunneling microscopy of binary-alloy surfaces: is chemical contrast a consequence of alloying? Surf Sci 405(2–3):L514–L519
CrossRef
175.
Hofer WA, Redinger J (2000) Scanning tunneling microscopy of binary alloys: first principles calculation of the current for PtX(100) surfaces. Surf Sci 447(1–3):51–61
CrossRef
176.
Serrate D, Ferriani P, Yoshida Y, Hla S-W, Menzel M, von Bergmann K, Heinze S, Kubetzka A, Wiesendanger R (2010) Imaging and manipulating the spin direction of individual atoms. Nat Nanotechnol 5(5):350–353
CrossRef
177.
Giessibl FJ, Hembacher S, Bielefeldt H, Mannhart J (2000) Subatomic features on the silicon (111)-(7 × 7) surface observed by atomic force microscopy. Science 289(5478):422–425
CrossRef
178.
Hug HJ, Lantz MA, Abdurixit A, van Schendel PJA, Hoffmann R, Kappenberger P, Baratoff A (2001) Subatomic features in atomic force microscopy images. Science 29(5513):2509a
CrossRef
179.
Giessibl FJ, Bielefeldt H, Hembacher S, Mannhart J (2001) Imaging of atomic orbitals with the atomic force microscope – experiments and simulations. Ann Phys 10(11–12):887–910
CrossRef
180.
Huang M, Cuma M, Liu F (2003) Seeing the atomic orbital: first-principles study of the effect of tip termination on atomic force microscopy. Phys Rev Lett 90(25):256101
CrossRef
181.
Chen CJ (2006) Possibility of imaging lateral profiles of individual tetrahedral hybrid orbitals in real space. Nanotechnology 17(7):S195–S200
CrossRef
182.
Campbellova A, Ondracek M, Pou P, Perez R, Klapetek P, Jelınek P (2011) ‘Sub-atomic’ resolution of non-contact atomic force microscope images induced by a heterogeneous tip structure: a density functional theory study. Nanotechnology 22(29):295710
CrossRef
183.
Aristov VY, Urbanik G, Kummer K, Vyalikh DV, Molodtsova OV, Preobrajenski AB, Zakharov AA, Hess C, Hänke T, Büchner B, Vobornik I, Fujii J, Panaccione G, Ossipyan YA, Knupfer M (2010) Graphene synthesis on cubic SiC/Si wafers: perspectives for mass production of graphene-based electronic devices. Nano Lett 10(3):992–995
CrossRef
184.
Fasolino A, Los JH, Katsnelson MI (2007) Intrinsic ripples in graphene. Nature Mater 6(11):858–861
CrossRef
185.
Gross L, Mohn F, Moll N, Schuler B, Criado A, Guitian E, Pena D, Gourdon A, Meyer G (2012) Bond-order discrimination by atomic force microscopy. Science 337(6100):1326–1329
CrossRef
186.
Horcas I, Fernandez R, Gomez-Rodriguez JM, Colchero J, Gomez-Herrero J, Baro AM (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78(1):013705
CrossRef
- Titel
- High Resolution STM Imaging
- DOI
- https://doi.org/10.1007/978-3-662-44551-8_15
- Autor:
-
Alexander N. Chaika
- Verlag
- Springer Berlin Heidelberg
- Sequenznummer
- 15
- Kapitelnummer
- 15