Skip to main content
Erschienen in: Photonic Network Communications 1/2020

17.06.2020 | Original Paper

High speed nano-optical encoder using photonic crystal ring resonator

verfasst von: R. Rajasekar, G. Thavasi Raja, Jayson K. Jayabarathan, S. Robinson

Erschienen in: Photonic Network Communications | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this present work, photonic crystal based ultra-high-speed encoder is proposed for optical computing applications. The designed logic device contains dual nanocavity coupled ring resonator, reflector and five waveguides in a square lattice with barium titanate rods arranged in a nanostructure platform. The encoding device is working based on the interference and resonance effect. The photonic band diagram and performance characteristics of the encoder, namely, bit rate, ON–OFF ratio and delay time are analyzed by using a plane wave expansion and finite difference time domain methods. The simulation results show that the designed encoder is capable of functioning four logic states precisely. Furthermore, the presented device has numerous advantages such as low power consumption, high data rate and a very low footprint. The response time and total chip area of the proposed encoder are 369.3 fs and 13.2 μm × 13.2 μm, respectively. Hence, this simple nano-logic platform is extremely suitable for photonic logic processors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mehra, R., Jaiswal, S., Dixit, H.K.: Optical computing with semiconductor optical amplifiers. Opt. Eng. 51(8), 080901 (2012)CrossRef Mehra, R., Jaiswal, S., Dixit, H.K.: Optical computing with semiconductor optical amplifiers. Opt. Eng. 51(8), 080901 (2012)CrossRef
2.
Zurück zum Zitat Robinson, S., Nakkeeran, R.: Photonic crystal ring resonator-based add drop filters: a review. Opt. Eng. 52(6), 060901 (2013)CrossRef Robinson, S., Nakkeeran, R.: Photonic crystal ring resonator-based add drop filters: a review. Opt. Eng. 52(6), 060901 (2013)CrossRef
3.
Zurück zum Zitat Joannopoulos, J.D., Villeneuve, P.R., Fan, S.: Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997)CrossRef Joannopoulos, J.D., Villeneuve, P.R., Fan, S.: Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997)CrossRef
4.
Zurück zum Zitat Rajasekar, R., Robinson, S.: Nano-electric field sensor based on two dimensional photonic crystal resonator. Opt. Mater. 85, 474–482 (2018)CrossRef Rajasekar, R., Robinson, S.: Nano-electric field sensor based on two dimensional photonic crystal resonator. Opt. Mater. 85, 474–482 (2018)CrossRef
5.
Zurück zum Zitat Rajasekar, R., Robinson, S.: Nano-pressure and temperature sensor based on hexagonal photonic crystal ring resonator. Plasmonics 14, 3–15 (2018)CrossRef Rajasekar, R., Robinson, S.: Nano-pressure and temperature sensor based on hexagonal photonic crystal ring resonator. Plasmonics 14, 3–15 (2018)CrossRef
6.
Zurück zum Zitat Rajasekar, R., Robinson, S.: Trapezoid 2D photonic crystal nanoring resonator-based channel drop filter for WDM systems. Photonic Netw. Commun. 36(2), 230–245 (2018)CrossRef Rajasekar, R., Robinson, S.: Trapezoid 2D photonic crystal nanoring resonator-based channel drop filter for WDM systems. Photonic Netw. Commun. 36(2), 230–245 (2018)CrossRef
7.
Zurück zum Zitat Shaik, E.H., Rangaswamy, N.: Improved design of all-optical photonic crystal logic gates using T-shaped waveguide. Opt. Quantum Electron. 48, 1–15 (2016)CrossRef Shaik, E.H., Rangaswamy, N.: Improved design of all-optical photonic crystal logic gates using T-shaped waveguide. Opt. Quantum Electron. 48, 1–15 (2016)CrossRef
8.
Zurück zum Zitat Shaik, E.H., Rangaswamy, N.: Investigation on photonic crystal based all optical clocked D-flip flop. IET Optoelectron. 11(4), 148–155 (2017)CrossRef Shaik, E.H., Rangaswamy, N.: Investigation on photonic crystal based all optical clocked D-flip flop. IET Optoelectron. 11(4), 148–155 (2017)CrossRef
9.
Zurück zum Zitat Alipour-Banaei, H., Rabati, M.G., Abdollahzadeh-Badelbou, P., Mehdizadeh, F.: Application of self-collimated beams to realization of all optical photonic crystal encoder. Phys. E Low-dimens. Syst. Nanostruct. 75, 77–85 (2016)CrossRef Alipour-Banaei, H., Rabati, M.G., Abdollahzadeh-Badelbou, P., Mehdizadeh, F.: Application of self-collimated beams to realization of all optical photonic crystal encoder. Phys. E Low-dimens. Syst. Nanostruct. 75, 77–85 (2016)CrossRef
10.
Zurück zum Zitat Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: A proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 11(1), 29–35 (2017)CrossRef Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: A proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 11(1), 29–35 (2017)CrossRef
12.
Zurück zum Zitat Gholamnejad, S., Zavvari, M.: Design and analysis of all-optical 4–2 binary encoder based on photonic crystal. Opt. Quantum Electron 49, 302–314 (2017)CrossRef Gholamnejad, S., Zavvari, M.: Design and analysis of all-optical 4–2 binary encoder based on photonic crystal. Opt. Quantum Electron 49, 302–314 (2017)CrossRef
13.
Zurück zum Zitat Moniem, A.: All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators. J. Mod. Opt. 63(8), 735–741 (2015)CrossRef Moniem, A.: All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators. J. Mod. Opt. 63(8), 735–741 (2015)CrossRef
14.
Zurück zum Zitat Iman, O., Rafah, N.: A novel all optical 4 × 2 encoder switch based on photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 127(19), 7835–7841 (2016)CrossRef Iman, O., Rafah, N.: A novel all optical 4 × 2 encoder switch based on photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 127(19), 7835–7841 (2016)CrossRef
15.
Zurück zum Zitat Anagha, E.G., Rajesh, A., Saranya, D.: Design of an all optical encoder using 2D photonic crystals. In: 2nd International Conference on Inventive Systems and Control Proceedings, pp. 55–59. IEEE (2018) Anagha, E.G., Rajesh, A., Saranya, D.: Design of an all optical encoder using 2D photonic crystals. In: 2nd International Conference on Inventive Systems and Control Proceedings, pp. 55–59. IEEE (2018)
16.
Zurück zum Zitat Seif-Dargahi, H.: Ultra-fast all-optical encoder using photonic crystal-based ringresonators. Photon. Netw Commun. 36(2), 272–277 (2018)CrossRef Seif-Dargahi, H.: Ultra-fast all-optical encoder using photonic crystal-based ringresonators. Photon. Netw Commun. 36(2), 272–277 (2018)CrossRef
18.
Zurück zum Zitat Hassangholizadeh-Kashtiban, M., Sabbaghi-Nadooshan, R., Alipour-Banaei, H.: A novel all optical reversible 4 × 2 encoderbased on photonic crystals. Opt. Int. J. Light Electron Opt. 126, 2368–2372 (2018)CrossRef Hassangholizadeh-Kashtiban, M., Sabbaghi-Nadooshan, R., Alipour-Banaei, H.: A novel all optical reversible 4 × 2 encoderbased on photonic crystals. Opt. Int. J. Light Electron Opt. 126, 2368–2372 (2018)CrossRef
19.
Zurück zum Zitat Shahid, N., et al.: Junction-type photonic crystal waveguides for notch-and pass-band filtering. Opt. Express 19, 21074–22108 (2011)CrossRef Shahid, N., et al.: Junction-type photonic crystal waveguides for notch-and pass-band filtering. Opt. Express 19, 21074–22108 (2011)CrossRef
20.
Zurück zum Zitat Venkatachalam, K., Robinson, S., Dhamodharan, S.K.: Performanceanalysis of an eight channel demultiplexer using a 2D photoniccrystal quasi square ring resonator. Opto-Electron. Rev. 25, 74–79 (2017)CrossRef Venkatachalam, K., Robinson, S., Dhamodharan, S.K.: Performanceanalysis of an eight channel demultiplexer using a 2D photoniccrystal quasi square ring resonator. Opto-Electron. Rev. 25, 74–79 (2017)CrossRef
21.
Zurück zum Zitat Nye, J.F.: Physical Properties of Crystals. Oxford University Press, Oxford (1960) Nye, J.F.: Physical Properties of Crystals. Oxford University Press, Oxford (1960)
22.
Zurück zum Zitat Mazet, L., Yang, S.M., Kalinin, S.V., Schamm-Chardon, S., Dubourdieu, C.: A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications. Sci. Technol. Adv. Mater. 16, 036005 (2015)CrossRef Mazet, L., Yang, S.M., Kalinin, S.V., Schamm-Chardon, S., Dubourdieu, C.: A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications. Sci. Technol. Adv. Mater. 16, 036005 (2015)CrossRef
23.
Zurück zum Zitat Kong, L.B., Li, S., Zhang, T.S., Zhai, J.W., Boey, F.Y.C., Mad, J.: Electrically tunable dielectric materials and strategies to improve their performances. Prog. Mater. Sci. 55, 840–893 (2010)CrossRef Kong, L.B., Li, S., Zhang, T.S., Zhai, J.W., Boey, F.Y.C., Mad, J.: Electrically tunable dielectric materials and strategies to improve their performances. Prog. Mater. Sci. 55, 840–893 (2010)CrossRef
24.
Zurück zum Zitat Lin, P.T., Liu, Z., Wessels, B.W.: Ferroelectric thin film photonic crystal waveguide and its electro-optic properties. J. Opt. A: Pure Appl. Opt. 11, 075005 (2009)CrossRef Lin, P.T., Liu, Z., Wessels, B.W.: Ferroelectric thin film photonic crystal waveguide and its electro-optic properties. J. Opt. A: Pure Appl. Opt. 11, 075005 (2009)CrossRef
25.
Zurück zum Zitat D’souza, N.M., Mathew, V.: Two-dimensional tunable photonic crystal defect based drop filter at communication wavelength. Photonics Nanostruct. Fundam. Appl. 25, 14–18 (2017)CrossRef D’souza, N.M., Mathew, V.: Two-dimensional tunable photonic crystal defect based drop filter at communication wavelength. Photonics Nanostruct. Fundam. Appl. 25, 14–18 (2017)CrossRef
26.
Zurück zum Zitat Rajasekar, R., Jayabarathan, J.K., Robinson, S.: Nano-optical filter based on multicavity coupled photonic crystal ring resonator. Physica E 114, 113591 (2019)CrossRef Rajasekar, R., Jayabarathan, J.K., Robinson, S.: Nano-optical filter based on multicavity coupled photonic crystal ring resonator. Physica E 114, 113591 (2019)CrossRef
27.
Zurück zum Zitat Girouard, P., Chen, P., Jeong, Y.K., Liu, Z., Ho, S.-T., Wessels, B.W.: Modulator with 40-GHz Modulation Utilizing BaTiO3 Photonic Crystal Waveguides. IEEE J. Quantum Electron. 53(4), 7962160 (2017)CrossRef Girouard, P., Chen, P., Jeong, Y.K., Liu, Z., Ho, S.-T., Wessels, B.W.: Modulator with 40-GHz Modulation Utilizing BaTiO3 Photonic Crystal Waveguides. IEEE J. Quantum Electron. 53(4), 7962160 (2017)CrossRef
28.
Zurück zum Zitat Rajasekar, R., Robinson, S.: Nano-channel drop filter using photonic crystal ring resonator for dense wavelength division multiplexing systems. J. Nanoelectron. Optoelectron. 14, 753–758 (2019)CrossRef Rajasekar, R., Robinson, S.: Nano-channel drop filter using photonic crystal ring resonator for dense wavelength division multiplexing systems. J. Nanoelectron. Optoelectron. 14, 753–758 (2019)CrossRef
Metadaten
Titel
High speed nano-optical encoder using photonic crystal ring resonator
verfasst von
R. Rajasekar
G. Thavasi Raja
Jayson K. Jayabarathan
S. Robinson
Publikationsdatum
17.06.2020
Verlag
Springer US
Erschienen in
Photonic Network Communications / Ausgabe 1/2020
Print ISSN: 1387-974X
Elektronische ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-020-00891-y

Weitere Artikel der Ausgabe 1/2020

Photonic Network Communications 1/2020 Zur Ausgabe

Neuer Inhalt