Skip to main content
Erschienen in: Experimental Mechanics 5/2015

01.06.2015

High-Strain Rate Compressive Behavior of Glass Beads Under Confinement

verfasst von: H. Luo, Y. Du, Z. Hu, W. L. Cooper, H. Lu

Erschienen in: Experimental Mechanics | Ausgabe 5/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Glass beads are often used to examine simulation models for granular materials. The dynamic behavior of glass beads, however, has not been characterized accurately. In this paper, the dynamic behavior is characterized at high strain rates. To describe the beads used in these experiments, the size distribution was measured, and the bead-level mechanical properties were determined by nanoindentation. The dynamic compressive behavior of glass beads under confinement was characterized at strain rates near 400 s−1 using a long split Hopkinson pressure bar. The glass beads were confined inside a hollow cylinder of hardened steel and capped by cemented tungsten carbide cylindrical rods. The assembly was subjected to repeated shaking and tapping to consolidate the glass beads to attain a given bulk mass density. Experiments were conducted on dry unsorted beads at three initial mass densities (1.46, 1.54 and 1.61 g/cm3), sorted beads at three sizes (0.30, 0.212, and 0.106 mm), and partially saturated beads with average bead size of 0.212 mm at five water contents (0, 7, 14, 18 and 22 % by weight). Effect of initial mass density, bead size and water content on the dynamic volumetric and deviatoric response was investigated. The impacted beads were sorted for analysis of the particle size distribution. The compressibility was characterized in terms of the void ratio as a function of the axial pressure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lade PV (2002) Instability, shear banding, and failure in granular materials. Int J Solids Struct 39:3337–3357CrossRef Lade PV (2002) Instability, shear banding, and failure in granular materials. Int J Solids Struct 39:3337–3357CrossRef
2.
Zurück zum Zitat Ragione LL, Jenkins JT (2007) The initial response of an idealized granular material. Proc R Soc A 463:735–758CrossRefMATH Ragione LL, Jenkins JT (2007) The initial response of an idealized granular material. Proc R Soc A 463:735–758CrossRefMATH
3.
4.
Zurück zum Zitat D’Addetta GA, Kun F, Ramm E (2002) On the application of a discrete model to the fracture process of cohesive granular materials. Granul Matter 4:77–90CrossRefMATH D’Addetta GA, Kun F, Ramm E (2002) On the application of a discrete model to the fracture process of cohesive granular materials. Granul Matter 4:77–90CrossRefMATH
5.
Zurück zum Zitat Andrade JE, Avila CF, Hall SA, Lenoir N, Viggiani G (2011) Multiscale modeling and characterization of granular matter: From grain kinematics to continuum mechanics. J Mech Phys Solids 59:237–250CrossRefMATH Andrade JE, Avila CF, Hall SA, Lenoir N, Viggiani G (2011) Multiscale modeling and characterization of granular matter: From grain kinematics to continuum mechanics. J Mech Phys Solids 59:237–250CrossRefMATH
7.
Zurück zum Zitat Bardenhagen SG, Brackbill JU, Sulsky DL (2000) A numerical study of stress distribution in sheared granular material in two dimensions. Phys Rev E 62:3882–3890CrossRef Bardenhagen SG, Brackbill JU, Sulsky DL (2000) A numerical study of stress distribution in sheared granular material in two dimensions. Phys Rev E 62:3882–3890CrossRef
8.
Zurück zum Zitat Bardenhagen SG, Brackbill JU, Sulsky DL (2000) The material-point method for granular materials. Comput Methods Appl Mech Eng 187:529–541CrossRefMATH Bardenhagen SG, Brackbill JU, Sulsky DL (2000) The material-point method for granular materials. Comput Methods Appl Mech Eng 187:529–541CrossRefMATH
9.
Zurück zum Zitat Benson DJ, Nesterenko VF, Jonsdottir F, Meyers MA (1997) Quasistatic and dynamic regimes of granular material deformation under impulse loading. J Mech Phys Solids 45:1955–1999CrossRefMATH Benson DJ, Nesterenko VF, Jonsdottir F, Meyers MA (1997) Quasistatic and dynamic regimes of granular material deformation under impulse loading. J Mech Phys Solids 45:1955–1999CrossRefMATH
10.
Zurück zum Zitat Fu P, Dafalias YF (2012) Quantification of large and localized deformation in granular materials. Int J Solids Struct 49:1741–1752CrossRef Fu P, Dafalias YF (2012) Quantification of large and localized deformation in granular materials. Int J Solids Struct 49:1741–1752CrossRef
11.
Zurück zum Zitat Cooper WL, Breaux BA (2010) Grain fracture in rapid particulate media deformation and a particulate media research roadmap from the PMEE workshops. Int J Fract 162:137–150CrossRefMATH Cooper WL, Breaux BA (2010) Grain fracture in rapid particulate media deformation and a particulate media research roadmap from the PMEE workshops. Int J Fract 162:137–150CrossRefMATH
12.
Zurück zum Zitat Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583CrossRef Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583CrossRef
13.
Zurück zum Zitat Kucuk Y, Mollamahmutoglu C, Wang Y, Lu H (2013) Nonlinearly viscoelastic nanoindentation of PMMA under a spherical tip. Exp Mech 53:731–742CrossRef Kucuk Y, Mollamahmutoglu C, Wang Y, Lu H (2013) Nonlinearly viscoelastic nanoindentation of PMMA under a spherical tip. Exp Mech 53:731–742CrossRef
14.
Zurück zum Zitat Dutta AK, Penumadu D (2007) Hardness and modulus of individual sand particles using nanoindentation. Geotech 173:1–10 Dutta AK, Penumadu D (2007) Hardness and modulus of individual sand particles using nanoindentation. Geotech 173:1–10
15.
Zurück zum Zitat Daphalapurkar NP, Wang F, Fu B, Lu H, Komanduri R (2010) Determination of mechanical properties of sand grains by nanoindentation. Exp Mech 51:719–728CrossRef Daphalapurkar NP, Wang F, Fu B, Lu H, Komanduri R (2010) Determination of mechanical properties of sand grains by nanoindentation. Exp Mech 51:719–728CrossRef
16.
Zurück zum Zitat Wang F, Fu B, Mirshams RA, Cooper WL, Komanduri R, Lu H (2011) Mechanical properties measurement of sand grains by nanoindentation. Conf Proc Soc Exp Mech 3:121–130CrossRef Wang F, Fu B, Mirshams RA, Cooper WL, Komanduri R, Lu H (2011) Mechanical properties measurement of sand grains by nanoindentation. Conf Proc Soc Exp Mech 3:121–130CrossRef
17.
Zurück zum Zitat Wang F, Fu B, Luo H, Staggs S, Mirshams RA, Cooper WL, Park SY, Kim MJ, Hartley C, Lu H (2014) Characterization of the grain-level mechanical behavior of Eglin sand by nanoindentation. Exp Mech 54:871–884CrossRef Wang F, Fu B, Luo H, Staggs S, Mirshams RA, Cooper WL, Park SY, Kim MJ, Hartley C, Lu H (2014) Characterization of the grain-level mechanical behavior of Eglin sand by nanoindentation. Exp Mech 54:871–884CrossRef
18.
Zurück zum Zitat Yamamuro JA, Bopp PA, Lade PV (1996) One-dimensional compression of sands at high pressure. J Geotech Eng ASCE 122:147–154CrossRef Yamamuro JA, Bopp PA, Lade PV (1996) One-dimensional compression of sands at high pressure. J Geotech Eng ASCE 122:147–154CrossRef
19.
Zurück zum Zitat Russell AR, Khalili N (2004) A bounding surface plasticity model for sands exhibiting particle crushing. Can Geotech J 41:1179–1192CrossRef Russell AR, Khalili N (2004) A bounding surface plasticity model for sands exhibiting particle crushing. Can Geotech J 41:1179–1192CrossRef
20.
Zurück zum Zitat Vallejos J (2008) Hydrostatic compression model for sandy soils. Can Geotech J 45:1169–1179CrossRef Vallejos J (2008) Hydrostatic compression model for sandy soils. Can Geotech J 45:1169–1179CrossRef
21.
Zurück zum Zitat Luo H, Lu H, Cooper WL, Komanduri R (2011) Effect of mass density on the compressive behavior of dry sand under confinement at high strain rates. Exp Mech 51:1499–1510CrossRef Luo H, Lu H, Cooper WL, Komanduri R (2011) Effect of mass density on the compressive behavior of dry sand under confinement at high strain rates. Exp Mech 51:1499–1510CrossRef
22.
Zurück zum Zitat Luo H, Cooper WL, Lu H (2014) Effect of particle size and moisture on the compressive behavior of dense Eglin sand under confinement at high strain rates. Int J Impact Eng 65:40–55CrossRef Luo H, Cooper WL, Lu H (2014) Effect of particle size and moisture on the compressive behavior of dense Eglin sand under confinement at high strain rates. Int J Impact Eng 65:40–55CrossRef
23.
Zurück zum Zitat Higgins W, Chakraborty T, Basu D (2013) A high strain-rate constitutive model for sand and its application in finite-element analysis of tunnels subjected to blast. Int J Numer Anal Methods Geomech 37:2590–2610CrossRef Higgins W, Chakraborty T, Basu D (2013) A high strain-rate constitutive model for sand and its application in finite-element analysis of tunnels subjected to blast. Int J Numer Anal Methods Geomech 37:2590–2610CrossRef
24.
Zurück zum Zitat Omidvar M, Iskander M, Bless S (2012) Stress–strain behavior of sand at high strain rates. Int J Impact Eng 49:192–213CrossRef Omidvar M, Iskander M, Bless S (2012) Stress–strain behavior of sand at high strain rates. Int J Impact Eng 49:192–213CrossRef
25.
Zurück zum Zitat Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19:3–20CrossRef Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19:3–20CrossRef
26.
Zurück zum Zitat Pharr GM, Harding DS, Oliver WC (1993) Measurement of fracture toughness in thin films and small volumes using nanoindentation method. In: Nastasi M, Parkin DM, Gleiter H (eds) Mechanical properties and deformation behavior of materials having ultra-fine microstructures. Kluwer Academic Publishers, Massachusetts, pp 449–461CrossRef Pharr GM, Harding DS, Oliver WC (1993) Measurement of fracture toughness in thin films and small volumes using nanoindentation method. In: Nastasi M, Parkin DM, Gleiter H (eds) Mechanical properties and deformation behavior of materials having ultra-fine microstructures. Kluwer Academic Publishers, Massachusetts, pp 449–461CrossRef
27.
Zurück zum Zitat Luo H, Lu H, Leventis N (2006) The compressive behavior of isocyanate-crosslinked silica aerogel at high strain rates. Mech Time-Depend Mater 10:83–111CrossRef Luo H, Lu H, Leventis N (2006) The compressive behavior of isocyanate-crosslinked silica aerogel at high strain rates. Mech Time-Depend Mater 10:83–111CrossRef
28.
Zurück zum Zitat Luo H, Churu G, Fabrizio EF, Schnobrich J, Hobbs A, Dass A, Mulik S, Zhang Y, Grady BP, Capecelatro A, Sotiriou-Leventis S, Lu H, Leventis N (2008) Synthesis and characterization of the physical, chemical and mechanical properties of isocyanate-crosslinked vanadia aerogels. J Sol-Gel Sci Technol 48:113–134CrossRef Luo H, Churu G, Fabrizio EF, Schnobrich J, Hobbs A, Dass A, Mulik S, Zhang Y, Grady BP, Capecelatro A, Sotiriou-Leventis S, Lu H, Leventis N (2008) Synthesis and characterization of the physical, chemical and mechanical properties of isocyanate-crosslinked vanadia aerogels. J Sol-Gel Sci Technol 48:113–134CrossRef
29.
Zurück zum Zitat Chen W, Luo H (2004) Dynamic compressive responses of intact and damaged ceramics from a single split Hopkinson pressure bar experiment. Exp Mech 44:295–299CrossRef Chen W, Luo H (2004) Dynamic compressive responses of intact and damaged ceramics from a single split Hopkinson pressure bar experiment. Exp Mech 44:295–299CrossRef
30.
Zurück zum Zitat Luo H, Chen W (2004) Dynamic compressive response of intact and damaged AD995 alumina. Int J Appl Ceram Technol 1:254–260CrossRef Luo H, Chen W (2004) Dynamic compressive response of intact and damaged AD995 alumina. Int J Appl Ceram Technol 1:254–260CrossRef
31.
Zurück zum Zitat Luo H, Chen W, Rajendran AM (2006) Dynamic compressive response of damaged and interlocked SiC–N ceramics. J Am Ceram Soc 89:266–273CrossRef Luo H, Chen W, Rajendran AM (2006) Dynamic compressive response of damaged and interlocked SiC–N ceramics. J Am Ceram Soc 89:266–273CrossRef
32.
Zurück zum Zitat Bragov AM, Lomunov AK, Sergeichev IV, Tsembelis K, Proud WG (2008) Determination of physicomechanical properties of soft soils from medium to high strain rates. Int J Impact Eng 35:967–976CrossRef Bragov AM, Lomunov AK, Sergeichev IV, Tsembelis K, Proud WG (2008) Determination of physicomechanical properties of soft soils from medium to high strain rates. Int J Impact Eng 35:967–976CrossRef
33.
Zurück zum Zitat Ravi-Chandar K, Ma Z (2004) Inelastic deformation in polymers under multiaxial compression. Mech Time-Depend Mater 4:333–357CrossRef Ravi-Chandar K, Ma Z (2004) Inelastic deformation in polymers under multiaxial compression. Mech Time-Depend Mater 4:333–357CrossRef
34.
Zurück zum Zitat Knauss WG, Emri I, Lu H (2008) Mechanics of polymers: viscoelasticity. In: Sharpe WN (ed) Handbook of experimental solid mechanics. Springer, New York, pp 49–95CrossRef Knauss WG, Emri I, Lu H (2008) Mechanics of polymers: viscoelasticity. In: Sharpe WN (ed) Handbook of experimental solid mechanics. Springer, New York, pp 49–95CrossRef
35.
Zurück zum Zitat Gray GT (2000) Classical Split-Hopkinson pressure bar testing. In: Kuhn H, Medlin D (eds) ASM handbook, mechanical testing and evaluation 8. Materials Park, OH, pp 462–476 Gray GT (2000) Classical Split-Hopkinson pressure bar testing. In: Kuhn H, Medlin D (eds) ASM handbook, mechanical testing and evaluation 8. Materials Park, OH, pp 462–476
36.
Zurück zum Zitat Frew DJ, Forrestal MJ, Chen W (2002) Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech 42:93–106CrossRef Frew DJ, Forrestal MJ, Chen W (2002) Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech 42:93–106CrossRef
37.
Zurück zum Zitat Rinne H (2010) The Weibull distribution: a handbook. CRC Press, Boca Raton, pp 149–154 Rinne H (2010) The Weibull distribution: a handbook. CRC Press, Boca Raton, pp 149–154
38.
Zurück zum Zitat Mcdowell GR, Amon A (2000) The application of Weibull statistics to the fracture of soil particles. Soils Found 40:133–141 Mcdowell GR, Amon A (2000) The application of Weibull statistics to the fracture of soil particles. Soils Found 40:133–141
39.
Zurück zum Zitat Papoulis A, Pillai SU (2002) Probability, random variables, and stochastic processes. McGraw-Hill Education, New York Papoulis A, Pillai SU (2002) Probability, random variables, and stochastic processes. McGraw-Hill Education, New York
40.
Zurück zum Zitat Merkus HG (2009) Particle size measurements: fundamentals, practice, quality. Springer-Science, New York, p 26 Merkus HG (2009) Particle size measurements: fundamentals, practice, quality. Springer-Science, New York, p 26
41.
Zurück zum Zitat Hardin BO (1985) Crushing of soil particles. J Geotech Eng 111:1177–1192CrossRef Hardin BO (1985) Crushing of soil particles. J Geotech Eng 111:1177–1192CrossRef
42.
Zurück zum Zitat Hagerty MM, Hite DR, Ullrich CR, Hagerty DJ (1993) One-dimensional high-pressure compression of granular material. J Geotech Eng 119:1–18CrossRef Hagerty MM, Hite DR, Ullrich CR, Hagerty DJ (1993) One-dimensional high-pressure compression of granular material. J Geotech Eng 119:1–18CrossRef
43.
Zurück zum Zitat Lambe TW, Whitman RV (1969) Soil mechanics, 3rd edn. Wiley, New York Lambe TW, Whitman RV (1969) Soil mechanics, 3rd edn. Wiley, New York
44.
Zurück zum Zitat Terzaghi K, Peck RB, Mesri G (1996) Soil mechanics in engineering practice. Wiley-IEEE, USA Terzaghi K, Peck RB, Mesri G (1996) Soil mechanics in engineering practice. Wiley-IEEE, USA
Metadaten
Titel
High-Strain Rate Compressive Behavior of Glass Beads Under Confinement
verfasst von
H. Luo
Y. Du
Z. Hu
W. L. Cooper
H. Lu
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 5/2015
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-015-9995-2

Weitere Artikel der Ausgabe 5/2015

Experimental Mechanics 5/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.