Skip to main content
Erschienen in: Journal of Materials Science 16/2019

15.05.2019 | Metals & corrosion

High-temperature magnetocaloric effect in devitrified Fe/Co based glassy monolayer and bilayer ribbons

verfasst von: Sushmita Dey, R. K. Roy, A. Basu Mallick, A. Mitra, A. K. Panda

Erschienen in: Journal of Materials Science | Ausgabe 16/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Rapidly quenched Co- and Fe-based monolayer and their bilayer prepared through double nozzle technique have been characterized to investigate its microstructural and magnetic properties and their possibility as high-temperature magnetocaloric material. The Co- and Fe-based monolayer ribbons displayed Curie temperatures (TC) of 463 K and 700 K, respectively. Magnetic entropy change ∆SM of the bilayer was measured at a low magnetizing field of 1 T in the temperature spans covering separately for TC of Co- and Fe-based ribbons corresponding to separate entropy at low- and high-temperature regime. The ∆SM value at TC of Fe-based ribbon displayed values in the span of 1.13–1.71 J kg−1 K−1 in their monolayer and bilayer state. On incipient nanocrystallisation at 773 K, the ∆SM and refrigerant capacity (RC) around TC of cobalt-based bilayer ribbon revealed comparable values as in their as-quenched state. However, nanocrystallisation elevated the ∆SM of bilayer across TC of the Fe-based regime to a high value close to 4.6 J kg−1 K−1 with a fairly elevated RC of 96 J kg−1. The enhanced ∆SM associated with the formation of Fe-based nanocrystallites is evidenced through transmission electron microscopy. The interdiffusion of ferromagnetic elements Fe and Co is also supposed to elevate the ∆SM as well as the RC of the glassy system in the bilayer ribbons.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tishin M, Spichkin YI (2003) The magnetocaloric effect and its applications institute of physics. CRC Press, Bristol, p 330CrossRef Tishin M, Spichkin YI (2003) The magnetocaloric effect and its applications institute of physics. CRC Press, Bristol, p 330CrossRef
2.
Zurück zum Zitat Gschneidner KA Jr, Pecharsky VK, Tsokol AO (2005) Recent developments in magnetocaloric materials. Rep Prog Phys 68:1479–1539CrossRef Gschneidner KA Jr, Pecharsky VK, Tsokol AO (2005) Recent developments in magnetocaloric materials. Rep Prog Phys 68:1479–1539CrossRef
3.
Zurück zum Zitat Costa SS, Alho BP, Alvarenga TST, von Ranke PJ, Nobreg EP (2017) Magnetocaloric effect study on amorphous in RENi3 (RE = Dy, Ho, Er). Intermetallics 87:90–93CrossRef Costa SS, Alho BP, Alvarenga TST, von Ranke PJ, Nobreg EP (2017) Magnetocaloric effect study on amorphous in RENi3 (RE = Dy, Ho, Er). Intermetallics 87:90–93CrossRef
4.
Zurück zum Zitat Sheng Wei, Jun-QiangWang GangWang, Huo Juntao, XinminWang Run-Wei Li (2018) Amorphous microwires of high entropy alloys with large magnetocaloric effect. Intermetallics 96:79–83CrossRef Sheng Wei, Jun-QiangWang GangWang, Huo Juntao, XinminWang Run-Wei Li (2018) Amorphous microwires of high entropy alloys with large magnetocaloric effect. Intermetallics 96:79–83CrossRef
5.
Zurück zum Zitat Fujita A, Fujieda S, Hasegawa V, Fukamichi K (2003) Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1−x)13 compounds and their hydrides. Phys Rev B 67:104416–104428CrossRef Fujita A, Fujieda S, Hasegawa V, Fukamichi K (2003) Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1−x)13 compounds and their hydrides. Phys Rev B 67:104416–104428CrossRef
6.
Zurück zum Zitat Sushmita Dey RK, Roy A Basu, Mallick A, Mitra AK Panda (2015) Enhancement in magnetocaloric properties of NiMnGa alloy through stoichiometric tuned phase transformation and magneto-thermal transitions. J Magn Magn Mater 439:305–311 Sushmita Dey RK, Roy A Basu, Mallick A, Mitra AK Panda (2015) Enhancement in magnetocaloric properties of NiMnGa alloy through stoichiometric tuned phase transformation and magneto-thermal transitions. J Magn Magn Mater 439:305–311
7.
Zurück zum Zitat Franco V, Borrego JM, Conde A (2006) Influence of Co addition on the magnetocaloric effect of FeCoSiAlGaPCB amorphous alloys. Appl Phys Lett 88:132509–132512CrossRef Franco V, Borrego JM, Conde A (2006) Influence of Co addition on the magnetocaloric effect of FeCoSiAlGaPCB amorphous alloys. Appl Phys Lett 88:132509–132512CrossRef
8.
Zurück zum Zitat Franco V, Conde CF, Bla’zquez JS, Conde A (2007) A constant magnetocaloric response in FeMoCuB amorphous alloys with different Fe/B ratios. J Appl Phys 101:093903–093908CrossRef Franco V, Conde CF, Bla’zquez JS, Conde A (2007) A constant magnetocaloric response in FeMoCuB amorphous alloys with different Fe/B ratios. J Appl Phys 101:093903–093908CrossRef
9.
Zurück zum Zitat Ipus JJ, Herre P, Ohodnicki P, McHenry ME (2012) High temperature x ray diffraction determination of the body-centered-cubic–face-centered-cubic transformation temperature in (Fe70Ni30)88Zr7B4Cu1 nanocomposites. J Appl Phys 111:07A323–07A326CrossRef Ipus JJ, Herre P, Ohodnicki P, McHenry ME (2012) High temperature x ray diffraction determination of the body-centered-cubic–face-centered-cubic transformation temperature in (Fe70Ni30)88Zr7B4Cu1 nanocomposites. J Appl Phys 111:07A323–07A326CrossRef
10.
Zurück zum Zitat Wood ME, Potter WH (1985) General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity. Cryogenics 25:667–683CrossRef Wood ME, Potter WH (1985) General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity. Cryogenics 25:667–683CrossRef
11.
Zurück zum Zitat Gorria Pedro, Sanchez Jose L, Llamazares Pablo Alverez, Perez Maria Jose, Macros Jorge Sanchez, Blanco Jesus A (2008) Relative cooling power enhancement in magneto-caloric nanostructured Pr2Fe17. J Phys D Appl Phys 41:192003–192008CrossRef Gorria Pedro, Sanchez Jose L, Llamazares Pablo Alverez, Perez Maria Jose, Macros Jorge Sanchez, Blanco Jesus A (2008) Relative cooling power enhancement in magneto-caloric nanostructured Pr2Fe17. J Phys D Appl Phys 41:192003–192008CrossRef
12.
Zurück zum Zitat Caballero-Flores R, Franco V, Conde A, Knipling KE, Willard MA (2011) Optimization of the refrigerant capacity in multiphase magnetocaloric materials. Appl Phys Lett 98:102505–102508CrossRef Caballero-Flores R, Franco V, Conde A, Knipling KE, Willard MA (2011) Optimization of the refrigerant capacity in multiphase magnetocaloric materials. Appl Phys Lett 98:102505–102508CrossRef
13.
Zurück zum Zitat McNerny KL, Kim Y, Laughlin DE, McHenry ME (2010) Chemical synthesis of monodisperse γ-Fe–Ni magnetic nanoparticles with tunable Curie temperatures for self-regulated hyperthermia. J Appl Phys 107:09A312–09A315CrossRef McNerny KL, Kim Y, Laughlin DE, McHenry ME (2010) Chemical synthesis of monodisperse γ-Fe–Ni magnetic nanoparticles with tunable Curie temperatures for self-regulated hyperthermia. J Appl Phys 107:09A312–09A315CrossRef
14.
Zurück zum Zitat Atalay S, Gencer H, Kolat VS (2005) Magnetic entropy change in Fe74−x CrxCu1Nb3Si13B9 (x = 14 and 17) amorphous alloys. J Non-Cryst Solids 351:30–32CrossRef Atalay S, Gencer H, Kolat VS (2005) Magnetic entropy change in Fe74−x CrxCu1Nb3Si13B9 (x = 14 and 17) amorphous alloys. J Non-Cryst Solids 351:30–32CrossRef
15.
Zurück zum Zitat Johnson F, Shull RD (2006) Amorphous-FeCoCrZrB ferromagnets for use as high-temperature magnetic refrigerants. J Appl Phys 99:08K909–08K911CrossRef Johnson F, Shull RD (2006) Amorphous-FeCoCrZrB ferromagnets for use as high-temperature magnetic refrigerants. J Appl Phys 99:08K909–08K911CrossRef
16.
Zurück zum Zitat Li Xing Zhou, Pan Ye, Tao Lu (2018) Magnetocaloric effect in Fe-based amorphous alloys and their composites with low boron content. J Non-Cryst Solids 487:7–11CrossRef Li Xing Zhou, Pan Ye, Tao Lu (2018) Magnetocaloric effect in Fe-based amorphous alloys and their composites with low boron content. J Non-Cryst Solids 487:7–11CrossRef
17.
Zurück zum Zitat Waske A, Hermann H, Mattern N, Mattern N, Skokov K, Gutfleish O, Eckert J (2013) Magnetocaloric effect of an Fe-based metallic glass compared to benchmark gadolinium. J Appl Phys 112:123918–123927CrossRef Waske A, Hermann H, Mattern N, Mattern N, Skokov K, Gutfleish O, Eckert J (2013) Magnetocaloric effect of an Fe-based metallic glass compared to benchmark gadolinium. J Appl Phys 112:123918–123927CrossRef
18.
Zurück zum Zitat Kolano-Burian Aleksandra, Kowalczyk Maciej, Szymczak Roman Kolano Ritta, Szymczak Henryk, Polak Marcin (2009) Magnetocaloric effect in Fe–Cr–Cu–Nb–Si–B amorphous materials. J Alloys Compd 479:71–73CrossRef Kolano-Burian Aleksandra, Kowalczyk Maciej, Szymczak Roman Kolano Ritta, Szymczak Henryk, Polak Marcin (2009) Magnetocaloric effect in Fe–Cr–Cu–Nb–Si–B amorphous materials. J Alloys Compd 479:71–73CrossRef
19.
Zurück zum Zitat Zhang M, Li J, Kong F, Liu J (2015) Magnetic properties and magnetocaloric effect of FeCrNbYB metallic glasses with high glass-forming ability. Intermetallics 59:18–22CrossRef Zhang M, Li J, Kong F, Liu J (2015) Magnetic properties and magnetocaloric effect of FeCrNbYB metallic glasses with high glass-forming ability. Intermetallics 59:18–22CrossRef
20.
Zurück zum Zitat Yüzüak E, Dincer I, Elerman Y, Dumkowc I, Heger B, Yuce Emre S (2015) Enhancement of magnetocaloric effect in CoMn0.9Fe0.1Ge alloy. J Alloys Compd 641:69–73CrossRef Yüzüak E, Dincer I, Elerman Y, Dumkowc I, Heger B, Yuce Emre S (2015) Enhancement of magnetocaloric effect in CoMn0.9Fe0.1Ge alloy. J Alloys Compd 641:69–73CrossRef
21.
Zurück zum Zitat Fu H, Ma Z, Zhang XJ, Wang DH, Teng BH, Agurgo Balfour E (2014) Table-like magnetocaloric effect in the Gd–Co–Al alloys with multi-phase structure. J Appl Phys 104:072401–072405 Fu H, Ma Z, Zhang XJ, Wang DH, Teng BH, Agurgo Balfour E (2014) Table-like magnetocaloric effect in the Gd–Co–Al alloys with multi-phase structure. J Appl Phys 104:072401–072405
22.
Zurück zum Zitat Panda AK, Sushmita Dey RK, Roy Satnam Singh, Mitra A (2015) Influence of phase transformation on interfacial activity and bend sensitivity of rapidly quenched Fe77.5Si7.5B15Co72.5Si bilayered magnetostrictive ribbons. J Magn Magn Mater 378:440–446CrossRef Panda AK, Sushmita Dey RK, Roy Satnam Singh, Mitra A (2015) Influence of phase transformation on interfacial activity and bend sensitivity of rapidly quenched Fe77.5Si7.5B15Co72.5Si bilayered magnetostrictive ribbons. J Magn Magn Mater 378:440–446CrossRef
23.
Zurück zum Zitat Panda AK, Roy RK, Dey S, Singh S, Mitra A (2013) Functional gradation through preferential crystallization and interfacial activity in rapidly quenched Fe/Co-based bilayered ribbons for bend sensors. J Appl Phys 114:023909–023917CrossRef Panda AK, Roy RK, Dey S, Singh S, Mitra A (2013) Functional gradation through preferential crystallization and interfacial activity in rapidly quenched Fe/Co-based bilayered ribbons for bend sensors. J Appl Phys 114:023909–023917CrossRef
24.
Zurück zum Zitat Chrissafis K, Maragakis MI, Efthimiadis KG, Polychroniadis EK (2005) Detailed study of the crystallization behavior of the metallic glass Fe75Si9B16. J Alloys Compd 386:165–173CrossRef Chrissafis K, Maragakis MI, Efthimiadis KG, Polychroniadis EK (2005) Detailed study of the crystallization behavior of the metallic glass Fe75Si9B16. J Alloys Compd 386:165–173CrossRef
25.
Zurück zum Zitat Stelmukh V, Gurov A, Voropaeva L, Novokhatskaya N, Serebryakov A (1995) Nanocrystallization of amorphous CoSiB alloys with strong compound forming additions. J Non-Cryst Solids 192:570–573CrossRef Stelmukh V, Gurov A, Voropaeva L, Novokhatskaya N, Serebryakov A (1995) Nanocrystallization of amorphous CoSiB alloys with strong compound forming additions. J Non-Cryst Solids 192:570–573CrossRef
26.
Zurück zum Zitat Ramanujan RV, Zhang YR (2006) Solid state dendrite formation in an amorphous magnetic Fe77.5Si13.5B9 alloy observed by in situ hot stage transmission electron microscopy. Appl Phys Lett 88:182506–182509CrossRef Ramanujan RV, Zhang YR (2006) Solid state dendrite formation in an amorphous magnetic Fe77.5Si13.5B9 alloy observed by in situ hot stage transmission electron microscopy. Appl Phys Lett 88:182506–182509CrossRef
27.
Zurück zum Zitat Bruck E (2005) Developments in magnetocaloric refrigeration. J Phys D Appl Phys 38:R381–R391CrossRef Bruck E (2005) Developments in magnetocaloric refrigeration. J Phys D Appl Phys 38:R381–R391CrossRef
28.
Zurück zum Zitat Alvarez P, Gorria P, Marcos JS, Barquín LF, Blanco JA (2010) The role of boron on the magneto-caloric effect of FeZrB metallic glasses. Intermetallics 18:2464–2467CrossRef Alvarez P, Gorria P, Marcos JS, Barquín LF, Blanco JA (2010) The role of boron on the magneto-caloric effect of FeZrB metallic glasses. Intermetallics 18:2464–2467CrossRef
29.
Zurück zum Zitat Ohodnicki PR Jr, Laughlin DE, McHenry ME, Widom M (2010) Application of classical nucleation theory to phase selection and composition of nucleated nanocrystals during crystallization of Co-rich (Co, Fe) based amorphous precursors. Acta Mater 58:4804–4813CrossRef Ohodnicki PR Jr, Laughlin DE, McHenry ME, Widom M (2010) Application of classical nucleation theory to phase selection and composition of nucleated nanocrystals during crystallization of Co-rich (Co, Fe) based amorphous precursors. Acta Mater 58:4804–4813CrossRef
30.
Zurück zum Zitat Sarkar SK, Sarita S, Babu PD, Biswas A, Siruguri V, Krishnan M (2016) Giant magnetocaloric effect from reverse martensitic transformation in NiMnGaCu ferromagnetic shape memory alloys. J Alloys Compd 670:281–288CrossRef Sarkar SK, Sarita S, Babu PD, Biswas A, Siruguri V, Krishnan M (2016) Giant magnetocaloric effect from reverse martensitic transformation in NiMnGaCu ferromagnetic shape memory alloys. J Alloys Compd 670:281–288CrossRef
31.
Zurück zum Zitat Stadler Shane, Khan Mahmud, Mitchell Joseph, Ali Naushad, Gomes Angelo M, Dubenko Igor, Takeuchi Armando Y, Guimarães Alberto P (2006) Magnetocaloric properties of Ni2Mn1−xCuxGa. Appl Phys Lett 88:192511CrossRef Stadler Shane, Khan Mahmud, Mitchell Joseph, Ali Naushad, Gomes Angelo M, Dubenko Igor, Takeuchi Armando Y, Guimarães Alberto P (2006) Magnetocaloric properties of Ni2Mn1−xCuxGa. Appl Phys Lett 88:192511CrossRef
32.
Zurück zum Zitat Yang W, Huo J, Liu H, Li J, Song L, Li Q, Xue L, Shen B, Inoue A (2016) Extraordinary magnetocaloric effect of Fe-based bulk glassy rods by combining fluxing treatment and J-quenching technique. J Alloys Compd 684:29–33CrossRef Yang W, Huo J, Liu H, Li J, Song L, Li Q, Xue L, Shen B, Inoue A (2016) Extraordinary magnetocaloric effect of Fe-based bulk glassy rods by combining fluxing treatment and J-quenching technique. J Alloys Compd 684:29–33CrossRef
33.
Zurück zum Zitat Kolano-Buriana Aleksandra, Kowalczykb Maciej, Kolanoa Roman, Szymczakc Ritta, Szymczakc Henryk, Polaka Marcin (2009) Magnetocaloric effect in Fe–Cr–Cu–Nb–Si–B amorphous materials. J Alloys Compd 479:71–73CrossRef Kolano-Buriana Aleksandra, Kowalczykb Maciej, Kolanoa Roman, Szymczakc Ritta, Szymczakc Henryk, Polaka Marcin (2009) Magnetocaloric effect in Fe–Cr–Cu–Nb–Si–B amorphous materials. J Alloys Compd 479:71–73CrossRef
34.
Zurück zum Zitat Liu Cong, Li Qiang, Huo Juntao, Yang Weiming, Chang Liang, Chang Chuntao, Suna Yanfei (2018) Near room-temperature magnetocaloric effect of Co-based bulk metallic glass. J Magn Magn Mater 446:162–165CrossRef Liu Cong, Li Qiang, Huo Juntao, Yang Weiming, Chang Liang, Chang Chuntao, Suna Yanfei (2018) Near room-temperature magnetocaloric effect of Co-based bulk metallic glass. J Magn Magn Mater 446:162–165CrossRef
35.
Zurück zum Zitat Caballero-Flores R, Franco V, Conde A, Knipling KE, Willard MA (2010) Influence of Co and Ni addition on the magnetocaloric effect in Fe88−2 CoxNixZr7B4Cu1 soft magnetic amorphous alloys. Appl Phys Lett 96:182506–182509CrossRef Caballero-Flores R, Franco V, Conde A, Knipling KE, Willard MA (2010) Influence of Co and Ni addition on the magnetocaloric effect in Fe88−2 CoxNixZr7B4Cu1 soft magnetic amorphous alloys. Appl Phys Lett 96:182506–182509CrossRef
36.
Zurück zum Zitat Franco V, Blazquez JS, Conde A (2006) The influence of Co addition on the magnetocaloric effect of nanoperm-type amorphous alloys. J Appl Phys 100:064307–064311CrossRef Franco V, Blazquez JS, Conde A (2006) The influence of Co addition on the magnetocaloric effect of nanoperm-type amorphous alloys. J Appl Phys 100:064307–064311CrossRef
Metadaten
Titel
High-temperature magnetocaloric effect in devitrified Fe/Co based glassy monolayer and bilayer ribbons
verfasst von
Sushmita Dey
R. K. Roy
A. Basu Mallick
A. Mitra
A. K. Panda
Publikationsdatum
15.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 16/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03684-5

Weitere Artikel der Ausgabe 16/2019

Journal of Materials Science 16/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.