Skip to main content
Erschienen in:

01.08.2024

High Temperature Melt Viscosity Prediction Model Based on BP Neural Network

verfasst von: Xiaoyue Fan, Shanchao Gao, Jianliang Zhang, Kexin Jiao

Erschienen in: Metals and Materials International | Ausgabe 8/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper comprehensively considers 12 indicators, including temperature, component content, solid–liquid ratio, free volume ratio, atomic cluster as characteristic parameters, to establish a back-propagation (BP) neural network prediction model for the viscosity of multi-element titanium-containing iron-based melts. The comprehensive model is dissected into distinct sub-models based on specific characteristic parameters, including the temperature and composition (T&C)-BP, Liquid structure parameters (LS)-BP, and Solid-phase particle parameters (S)-BP sub-models. The performance and applicability of each sub-model are rigorously analyzed, providing valuable insights into their respective scopes and limitations. By comparing the actual molten iron viscosity with the model predicted value, it was found that, the relative errors for all predicted values were found to be within 10%. The relative error for individual samples at 1350 °C was an impressive 1.3%. Furthermore, a substantial 56% of the predictions exhibited a relative error of less than 5%.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat M. Geerdes, R. Chaigneau, O. Lingiardi, R. Molenaar, R. van Opbergen, Y. Sha, J. Warren, Modern Blast Furnace Ironmaking: An Introduction (IOS Press, Amsterdam, 2020)CrossRef M. Geerdes, R. Chaigneau, O. Lingiardi, R. Molenaar, R. van Opbergen, Y. Sha, J. Warren,  Modern Blast Furnace Ironmaking: An Introduction (IOS Press, Amsterdam, 2020)CrossRef
2.
Zurück zum Zitat K.-X. Jiao, J.-L. Zhang, Z.-J. Liu, C.-L. Chen, Y.-X. Liu, Analysis of blast furnace hearth sidewall erosion and protective layer formation. ISIJ Int. 56, 1956–1963 (2016)CrossRef K.-X. Jiao, J.-L. Zhang, Z.-J. Liu, C.-L. Chen, Y.-X. Liu, Analysis of blast furnace hearth sidewall erosion and protective layer formation. ISIJ Int. 56, 1956–1963 (2016)CrossRef
3.
Zurück zum Zitat J.L. Zhang, D.W. Luo, H. Zeng, H.B. Zuo, K.X. Jiao, Blast Furnace Anatomy Research (Metallurgical Industry Press, Beijing, 2019) J.L. Zhang, D.W. Luo, H. Zeng, H.B. Zuo, K.X. Jiao, Blast Furnace Anatomy Research (Metallurgical Industry Press, Beijing, 2019)
4.
Zurück zum Zitat X. Fan, K. Jiao, J. Zhang, R. Cao, R. He, K. Wang, Study on physicochemical properties of Al2O3SiC C castable for blast furnace. Ceram. Int. 45, 13903–13911 (2019)CrossRef X. Fan, K. Jiao, J. Zhang, R. Cao, R. He, K. Wang, Study on physicochemical properties of Al2O3SiC C castable for blast furnace. Ceram. Int. 45, 13903–13911 (2019)CrossRef
5.
Zurück zum Zitat S.L. Wu, X.L. Wang, J.L. Zhang, Iron and Steel Metallurgy (Ironmaking Part), 4th edn. (Metallurgical Industry Press, Beijing, 2019) S.L. Wu, X.L. Wang, J.L. Zhang, Iron and Steel Metallurgy (Ironmaking Part), 4th edn. (Metallurgical Industry Press, Beijing, 2019)
6.
Zurück zum Zitat E.D. Andrade, Atheoryoftheviscosityofliquids-Part I. Phil. Mag. 17, 497–511 (1934)CrossRef E.D. Andrade, Atheoryoftheviscosityofliquids-Part I. Phil. Mag. 17, 497–511 (1934)CrossRef
7.
Zurück zum Zitat G. Kaptay, A unified equation for the viscosity of pure liquid metals. Int. J. Mater. Res. 96, 24–31 (2021) G. Kaptay, A unified equation for the viscosity of pure liquid metals. Int. J. Mater. Res. 96, 24–31 (2021)
8.
Zurück zum Zitat I. Budai, M.Z. Benkő, G. Kaptay, Comparison of different theoretical models to experimental data on viscosity of binary liquid alloys, Materials science forum (Trans Tech Publ, Switzerland, 2007), pp.489–496 I. Budai, M.Z. Benkő, G. Kaptay, Comparison of different theoretical models to experimental data on viscosity of binary liquid alloys, Materials science forum (Trans Tech Publ, Switzerland, 2007), pp.489–496
9.
Zurück zum Zitat M. Hirai, Estimation of viscosities of liquid alloys. ISIJ Int. 33, 251–258 (1993)CrossRef M. Hirai, Estimation of viscosities of liquid alloys. ISIJ Int. 33, 251–258 (1993)CrossRef
10.
Zurück zum Zitat H. Eyring, Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936)CrossRef H. Eyring, Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936)CrossRef
11.
Zurück zum Zitat S. Seetharaman, D. Sichen, Estimation of the viscosities of binary metallic melts using Gibbs energies of mixing. Metall. and Mater. Trans. B. 25, 589–595 (1994)CrossRef S. Seetharaman, D. Sichen, Estimation of the viscosities of binary metallic melts using Gibbs energies of mixing. Metall. and Mater. Trans. B. 25, 589–595 (1994)CrossRef
12.
Zurück zum Zitat G. Kaptay, (2003) A new equation to estimate the concentration dependence of the viscosity of liquid metallic alloys from the heat of mixing data, in Proceedings of microCAD 2003 Conference. Section Metallurgy, University of Miskolc, 2003, pp. 23–28. G. Kaptay, (2003) A new equation to estimate the concentration dependence of the viscosity of liquid metallic alloys from the heat of mixing data, in Proceedings of microCAD 2003 Conference. Section Metallurgy, University of Miskolc, 2003, pp. 23–28.
13.
Zurück zum Zitat P.W. Atkins, J. De Paula, Physikalische Chemie (John Wiley & Sons, New Jersey, 2013) P.W. Atkins, J. De Paula, Physikalische Chemie (John Wiley & Sons, New Jersey, 2013)
14.
Zurück zum Zitat Z. Morita, T. Iida, M. Ueda, The excess viscosity of liquid binary alloys. Liquid Metals 1977, 600–606 (1976) Z. Morita, T. Iida, M. Ueda, The excess viscosity of liquid binary alloys. Liquid Metals 1977, 600–606 (1976)
15.
Zurück zum Zitat L.Y. Kozlov, L. Romanov, N. Petrov, (1983) Prediction of multicomponent metallic melt viscosity, Izv. Vuz. Chern Metallurg 3. L.Y. Kozlov, L. Romanov, N. Petrov, (1983) Prediction of multicomponent metallic melt viscosity, Izv. Vuz. Chern Metallurg 3.
16.
Zurück zum Zitat H.-C. Liao, G. Yuan, Q.-G. Wang, D. Wilson, Development of viscosity model for aluminum alloys using BP neural network. Trans. Nonferrous Metals Soc. China 31(2978), 2985 (2021) H.-C. Liao, G. Yuan, Q.-G. Wang, D. Wilson, Development of viscosity model for aluminum alloys using BP neural network. Trans. Nonferrous Metals Soc. China 31(2978), 2985 (2021)
17.
Zurück zum Zitat K. Yang, Modeling of silicon content in blast furnace hot metal based on neural network, Dissertation, Yanshan University (2016) K. Yang, Modeling of silicon content in blast furnace hot metal based on neural network, Dissertation, Yanshan University (2016)
18.
Zurück zum Zitat T.D. Sun, Z.Y. Yang, Z.H. Xu, Research on the application of neural network method in predicting the silicon content of blast furnace hot metal. Steel & Iron 31, 18–20 (1996) T.D. Sun, Z.Y. Yang, Z.H. Xu, Research on the application of neural network method in predicting the silicon content of blast furnace hot metal. Steel & Iron 31, 18–20 (1996)
19.
Zurück zum Zitat W. Liang, G. Wang, X. Ning, J. Zhang, Y. Li, C. Jiang, N. Zhang, Application of BP neural network to the prediction of coal ash melting characteristic temperature. Fuel 260, 116324 (2020)CrossRef W. Liang, G. Wang, X. Ning, J. Zhang, Y. Li, C. Jiang, N. Zhang, Application of BP neural network to the prediction of coal ash melting characteristic temperature. Fuel 260, 116324 (2020)CrossRef
20.
Zurück zum Zitat Y.D. Zeng, J. Qu, Application of fuzzy neural network in Cupola Molten iron quality prediction. Casting Technology 2010, 487–490 (2010) Y.D. Zeng, J. Qu, Application of fuzzy neural network in Cupola Molten iron quality prediction. Casting Technology 2010, 487–490 (2010)
21.
Zurück zum Zitat M.A. Duchesne, A. Macchi, D.Y. Lu, R.W. Hughes, D. McCalden, E.J. Anthony, Artificial neural network model to predict slag viscosity over a broad range of temperatures and slag compositions. Fuel Process. Technol. 91, 831–836 (2010)CrossRef M.A. Duchesne, A. Macchi, D.Y. Lu, R.W. Hughes, D. McCalden, E.J. Anthony, Artificial neural network model to predict slag viscosity over a broad range of temperatures and slag compositions. Fuel Process. Technol. 91, 831–836 (2010)CrossRef
22.
Zurück zum Zitat Z. Chen, M. Wang, Z. Meng, H. Wang, L. Liu, X. Wang, Development of structure-informed artificial neural network for accurately modeling viscosity of multicomponent molten slags. Ceram. Int. 47, 30691–30701 (2021)CrossRef Z. Chen, M. Wang, Z. Meng, H. Wang, L. Liu, X. Wang, Development of structure-informed artificial neural network for accurately modeling viscosity of multicomponent molten slags. Ceram. Int. 47, 30691–30701 (2021)CrossRef
23.
Zurück zum Zitat M. Wu, B. Lv, Prediction of viscosity of ternary tin-based lead-free solder melt using BP neural network. Solder. Surf. Mount Technol. 32, 173–180 (2020)CrossRef M. Wu, B. Lv, Prediction of viscosity of ternary tin-based lead-free solder melt using BP neural network. Solder. Surf. Mount Technol. 32, 173–180 (2020)CrossRef
24.
Zurück zum Zitat I. Balyakin, A. Yuryev, V. Filippov, B. Gelchinski, Viscosity of liquid gallium: neural network potential molecular dynamics and experimental study. Comput. Mater. Sci. 215, 111802 (2022)CrossRef I. Balyakin, A. Yuryev, V. Filippov, B. Gelchinski, Viscosity of liquid gallium: neural network potential molecular dynamics and experimental study. Comput. Mater. Sci. 215, 111802 (2022)CrossRef
25.
Zurück zum Zitat S. Gao, K. Jiao, J. Zhang, X. Fan, Z. Liu, A. Zheng, Review on the viscosity of iron-based melts in metallurgical process. ISIJ Int. 62, 2172–2182 (2022)CrossRef S. Gao, K. Jiao, J. Zhang, X. Fan, Z. Liu, A. Zheng, Review on the viscosity of iron-based melts in metallurgical process. ISIJ Int. 62, 2172–2182 (2022)CrossRef
26.
Zurück zum Zitat D.H. Schwitalla, A.M. Bronsch, M. Klinger, S. Guhl, B. Meyer, Analysis of solid phase formation and its impact on slag rheology. Fuel 203, 932–941 (2017)CrossRef D.H. Schwitalla, A.M. Bronsch, M. Klinger, S. Guhl, B. Meyer, Analysis of solid phase formation and its impact on slag rheology. Fuel 203, 932–941 (2017)CrossRef
27.
Zurück zum Zitat Q. Zhang, J. Wang, S. Tang, Y. Wang, J. Li, W. Zhou, Z. Wang, Molecular dynamics investigation of the local structure in iron melts and its role in crystal nucleation during rapid solidification. Phys. Chem. Chem. Phys. 21, 4122–4135 (2019)CrossRefPubMed Q. Zhang, J. Wang, S. Tang, Y. Wang, J. Li, W. Zhou, Z. Wang, Molecular dynamics investigation of the local structure in iron melts and its role in crystal nucleation during rapid solidification. Phys. Chem. Chem. Phys. 21, 4122–4135 (2019)CrossRefPubMed
28.
Zurück zum Zitat X. Fan, S. Gao, J. Zhang, K. Jiao, Analysis of the structure and viscosity of iron melts containing titanium at various concentration. J. Mol. Liq. 386, 122519 (2023)CrossRef X. Fan, S. Gao, J. Zhang, K. Jiao, Analysis of the structure and viscosity of iron melts containing titanium at various concentration. J. Mol. Liq. 386, 122519 (2023)CrossRef
30.
Zurück zum Zitat N. Ketkar, Introduction to keras, in Deep Learning with Python: A Hands-on Introduction (Apress, Berkeley, 2017), pp. 97–111 N. Ketkar, Introduction to keras, in Deep Learning with Python: A Hands-on Introduction (Apress, Berkeley, 2017), pp. 97–111
31.
Zurück zum Zitat W. Python, Python, Python Releases for Windows 24 (2021) W. Python, Python, Python Releases for Windows 24 (2021)
32.
Zurück zum Zitat T. Kluyver, B. Ragan-Kelley, F. Pérez, B.E. Granger, M. Bussonnier, J. Frederic, K. Kelley, J.B. Hamrick, J. Grout, S. Corlay, Jupyter Notebooks-a publishing format for reproducible computational workflows. Elpub 2016, 87–90 (2016) T. Kluyver, B. Ragan-Kelley, F. Pérez, B.E. Granger, M. Bussonnier, J. Frederic, K. Kelley, J.B. Hamrick, J. Grout, S. Corlay, Jupyter Notebooks-a publishing format for reproducible computational workflows. Elpub 2016, 87–90 (2016)
33.
Zurück zum Zitat D.P. Bertsekas, Nonlinear programming. J. Oper. Res. Soc.Oper. Res. Soc. 48, 334–334 (1997)CrossRef D.P. Bertsekas, Nonlinear programming. J. Oper. Res. Soc.Oper. Res. Soc. 48, 334–334 (1997)CrossRef
34.
Zurück zum Zitat F. Zou, L. Shen, Z. Jie, W. Zhang, W. Liu, (2019) A sufficient condition for convergences of adam and rmsprop, in Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pp. 11127–11135. F. Zou, L. Shen, Z. Jie, W. Zhang, W. Liu, (2019) A sufficient condition for convergences of adam and rmsprop, in Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pp. 11127–11135.
35.
Zurück zum Zitat F. Shi, X.C. Wang, L. Yu, Y. Li, MATLAB neural network 30 case studies (Beijing University of Aeronautics and Astronautics Press, Beijing, 2010), pp.102–112 F. Shi, X.C. Wang, L. Yu, Y. Li, MATLAB neural network 30 case studies (Beijing University of Aeronautics and Astronautics Press, Beijing, 2010), pp.102–112
36.
Zurück zum Zitat S. Gao, K. Jiao, J. Zhang, X. Fan, Y. Zong, Association of atomic clusters and free volume with the viscosity of Fe-C melts. Chem. Phys. Lett. 806, 139983 (2022)CrossRef S. Gao, K. Jiao, J. Zhang, X. Fan, Y. Zong, Association of atomic clusters and free volume with the viscosity of Fe-C melts. Chem. Phys. Lett. 806, 139983 (2022)CrossRef
Metadaten
Titel
High Temperature Melt Viscosity Prediction Model Based on BP Neural Network
verfasst von
Xiaoyue Fan
Shanchao Gao
Jianliang Zhang
Kexin Jiao
Publikationsdatum
01.08.2024
Verlag
The Korean Institute of Metals and Materials
Erschienen in
Metals and Materials International / Ausgabe 8/2024
Print ISSN: 1598-9623
Elektronische ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-024-01644-6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.