Skip to main content

2013 | OriginalPaper | Buchkapitel

High Temperature Polymer Nanocomposites

verfasst von : K. Balasubramanian, Manoj Tirumalai

Erschienen in: Structural Nanocomposites

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The chapter on High Temperature Polymer Nanocomposites mainly covers the advancements made in the research on varied composite materials and their novel innovations for high temperature applications. The chapter begins with a prelude on existing polymers of thermoplastic or thermosets and also a combination of the two to exploit the dual advantage of both high temperature thermoplastics and thermosets. The polymer composites are developed and implemented for varied temperature regimes in the range of 120–250°C, 250–350°C specially suited for aerospace applications. Further research work is under progress to explore the material suitable for temperatures above 350°C. The initial section explains on the applicability of polymer composites having matrices such as either liquid crystalline polymer, cyanates, polyimides or bismaleimides which are reinforced with either the carbon, glass or aramid fibres especially continuous fibre which provides improved material and physical properties. The polymer-composites are assessed for performance of the matrices and the composites not only for their strength or stiffness but also for their resistance to cracking, minimum loss of weight, brittleness due to cross-linking and other properties that may degrade the performance of the composites over the long period of high temperature applications. This section mentions on the literature reviews having come up with research in progress on other types of resins for high temperature applications namely the oligomers such as the acetylene terminated polyimides or the norbornene terminated polyimides. The second section is concerned with the polymer-nanocomposites for high temperature applications. In this section, the role of nanofillers in the enhancement of composite properties is discussed. The various forms of nanofillers are the nanoclay, nanofibres, carbon nanotubes, Polyhedral OligoSilsesquioxanes (POSS) and nano-oxides where they reinforce polymer chain at molecular scale as against the carbon fibres of macroscopic scale seen in polymer-composites. In a nanocomposite the thermal properties depends on the filler’s nature, rate and dispersion in a matrices. The applications have been as fire retardant materials or for re-entry applications in aerospace vehicles. Research on nanofillers is still at its nascent stage that ample scope is available for exploring the potential of various nanofillers for high temperature applications and as fire retardant materials. Some polymer thermosets such as PMR-15 (Polymerization from Monomeric Reactants) are the most extensively used resin for applications where long term thermal stability is required at 300°C. This section dwells on other progress under way in the field of nanocomposites as high temperature nanocomposites. The last section presents a review on advanced materials for high temperature applications, especially applicable for the next generation aerospace vehicles. The issues concerning adhesives for joining of surfaces exposed to high temperatures, the effective role of nano-fillers for improving fracture toughness at high temperature etc. It is seen that the most promising resin for high temperatures has been the polyimides (315°C). This resin has high Tg (400°C) and other good characteristics such as good micro cracking resistance, low moisture absorption and low toxicity. There are various grades of polyimides under development. Overall, the chapter provides a glimpse on the effective developments in the field of polymer-composites and nanocomposites for high temperature applications especially for aerospace vehicle and automotives.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cuppoletti, J.: Metal, ceramic and polymeric composites for various uses, ISBN 978-953-307-353-8, InTech, 20 July (2011) Cuppoletti, J.: Metal, ceramic and polymeric composites for various uses, ISBN 978-953-307-353-8, InTech, 20 July (2011)
2.
Zurück zum Zitat Gan, M., et al.: Degradation of high temperature composites under thermal spike loads, Sampe Europe Conference & Exhibition Gan, M., et al.: Degradation of high temperature composites under thermal spike loads, Sampe Europe Conference & Exhibition
3.
Zurück zum Zitat Dimitrienko, Y.I.: Thermomechanics of Composites under High Temperatures. Kluwer Academic Publishers, Dordrecht (1999)CrossRef Dimitrienko, Y.I.: Thermomechanics of Composites under High Temperatures. Kluwer Academic Publishers, Dordrecht (1999)CrossRef
4.
Zurück zum Zitat Hoebergen, A., Holmberg, J.A.: Vacuum Infusion, ASM Handbook, vol. 21, pp. 501–515. Composite, Materials Park (OH) (2001) Hoebergen, A., Holmberg, J.A.: Vacuum Infusion, ASM Handbook, vol. 21, pp. 501–515. Composite, Materials Park (OH) (2001)
5.
Zurück zum Zitat Mangalgiri, P.D.: Polymer-matrix composites for high-temperature applications. Defence Sci. J. 55(2), 175–193 (2005) Mangalgiri, P.D.: Polymer-matrix composites for high-temperature applications. Defence Sci. J. 55(2), 175–193 (2005)
6.
Zurück zum Zitat Boyd, J.D., Chang, G.E.C.: Bismaleimide composites for advanced high-temperature applications. Int. SAMPE Symp. 38, 357–369 (1993) Boyd, J.D., Chang, G.E.C.: Bismaleimide composites for advanced high-temperature applications. Int. SAMPE Symp. 38, 357–369 (1993)
7.
Zurück zum Zitat Manocha, L.M.: High performance carbon–carbon composites. Sadhana 28(1–2), 349–358 (2003)CrossRef Manocha, L.M.: High performance carbon–carbon composites. Sadhana 28(1–2), 349–358 (2003)CrossRef
10.
Zurück zum Zitat Simos, N.: Composite materials under extreme radiation and temperature environments of the next generation nuclear reactors. www.intechopen.com (2011) Simos, N.: Composite materials under extreme radiation and temperature environments of the next generation nuclear reactors. www.​intechopen.​com (2011)
11.
Zurück zum Zitat Bonal, J.-P., Kohyama, K., van der Laan, J., Snead, L.: Graphite, ceramics and ceramic composites for high-temperature nuclear power systems. MRS Bull. 34, 28–34 (2009)CrossRef Bonal, J.-P., Kohyama, K., van der Laan, J., Snead, L.: Graphite, ceramics and ceramic composites for high-temperature nuclear power systems. MRS Bull. 34, 28–34 (2009)CrossRef
12.
Zurück zum Zitat Tomar, V.: Nanotechnology thought leaders series, school of aeronautics and astronautics, Purdue University (2011) Tomar, V.: Nanotechnology thought leaders series, school of aeronautics and astronautics, Purdue University (2011)
14.
Zurück zum Zitat Morgan, A.B.: Polymer-clay nanocomposites: Design and application of multi-functional materials. Mater. Matters 2, 20–25 (2007) Morgan, A.B.: Polymer-clay nanocomposites: Design and application of multi-functional materials. Mater. Matters 2, 20–25 (2007)
15.
Zurück zum Zitat Frank, K.: Book review: Polymer nanocomposites—processing, characterization, and applications. J. Eng. Fibers Fabr. 3(3) (2008) Frank, K.: Book review: Polymer nanocomposites—processing, characterization, and applications. J. Eng. Fibers Fabr. 3(3) (2008)
16.
Zurück zum Zitat Tzeng, S.S.: Evolution of microstructure and properties of phenolic resin-based carbon/carbon composites during pyrolysis Mater. Chem. Phys. 73, 162–169 (2002) Tzeng, S.S.: Evolution of microstructure and properties of phenolic resin-based carbon/carbon composites during pyrolysis Mater. Chem. Phys. 73, 162–169 (2002)
17.
Zurück zum Zitat Sambarkar, P.P., et al.: Polymer nanocomposites: An overview. Int. J. Pharm. Pharm. Sci 4(2), 60–65 (2012) Sambarkar, P.P., et al.: Polymer nanocomposites: An overview. Int. J. Pharm. Pharm. Sci 4(2), 60–65 (2012)
18.
Zurück zum Zitat Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater Sci. Eng. R 28, 1–63 (2000)CrossRef Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater Sci. Eng. R 28, 1–63 (2000)CrossRef
19.
Zurück zum Zitat Sheng, X.: Polymer nanocomposites for high-temperature composite repair, Iowa State University Digital Repository @ Iowa State University (2008) Sheng, X.: Polymer nanocomposites for high-temperature composite repair, Iowa State University Digital Repository @ Iowa State University (2008)
20.
Zurück zum Zitat Kurahatti, R.V., et al.: Defence applications of polymer nanocomposites. Defence Sci. J. 60(5), 551–563 (2010)CrossRef Kurahatti, R.V., et al.: Defence applications of polymer nanocomposites. Defence Sci. J. 60(5), 551–563 (2010)CrossRef
21.
Zurück zum Zitat Hussain, F., et al.: Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview. J. Compo. Mater. 40(17), 1511–1575 (2006)CrossRef Hussain, F., et al.: Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview. J. Compo. Mater. 40(17), 1511–1575 (2006)CrossRef
22.
Zurück zum Zitat Takeichi, T., et al.: High-performance polymer alloys of polybenzoxazine and bismaleimide. Polymer 49, 1173–1179 (2008)CrossRef Takeichi, T., et al.: High-performance polymer alloys of polybenzoxazine and bismaleimide. Polymer 49, 1173–1179 (2008)CrossRef
23.
Zurück zum Zitat Srikanth, I., Daniel, A., Kumar, S., Padmavathi, N., Singh, V., Ghosal, P., et al.: Nano silica modified carbon—phenolic composites for enhanced ablation resistance. Scr. Mater. 63, 200–203 (2010)CrossRef Srikanth, I., Daniel, A., Kumar, S., Padmavathi, N., Singh, V., Ghosal, P., et al.: Nano silica modified carbon—phenolic composites for enhanced ablation resistance. Scr. Mater. 63, 200–203 (2010)CrossRef
24.
Zurück zum Zitat Marshall Space Flight Cen, Application of Ablative Composites to Nozzles for Reusable Solid Rocket Motors, practice no. Pd-ed-1218 page 1 of 8 (1989) Marshall Space Flight Cen, Application of Ablative Composites to Nozzles for Reusable Solid Rocket Motors, practice no. Pd-ed-1218 page 1 of 8 (1989)
25.
Zurück zum Zitat Lao, S., Ho, W., Ngyuen, K., Koo, J.H.: Flammabiltiy, mechanical, and thermal properties of polyamide nanocomposites. In Proceedings of SAMPE 2005, Seattle, WA (2005) Lao, S., Ho, W., Ngyuen, K., Koo, J.H.: Flammabiltiy, mechanical, and thermal properties of polyamide nanocomposites. In Proceedings of SAMPE 2005, Seattle, WA (2005)
26.
Zurück zum Zitat Zhang, Z., Yang, J.L.: Creep resistant polymeric nanocomposites. Polymer 45, 3481–3485 (2004)CrossRef Zhang, Z., Yang, J.L.: Creep resistant polymeric nanocomposites. Polymer 45, 3481–3485 (2004)CrossRef
27.
Zurück zum Zitat Walker, L.S., et al.: Toughening in graphene ceramic composites. ACS Nano. Org. 5(4), 3182–3190 (2011)CrossRef Walker, L.S., et al.: Toughening in graphene ceramic composites. ACS Nano. Org. 5(4), 3182–3190 (2011)CrossRef
28.
Zurück zum Zitat Poyato, R., et al.: Aqueous colloidal processing of single-wall carbon nanotubes and their composites with ceramics. Nanotechnology 17, 1770–1777 (2006)CrossRef Poyato, R., et al.: Aqueous colloidal processing of single-wall carbon nanotubes and their composites with ceramics. Nanotechnology 17, 1770–1777 (2006)CrossRef
29.
Zurück zum Zitat Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.B.T., Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRef Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.B.T., Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRef
30.
Zurück zum Zitat Tomar, V., Gan, M.: Temperature dependent nanomechanics of si-c-n nanocomposites with an account of particle clustering and grain boundaries. Submitted to. Int. J. Hydrogen Energy (2009) Tomar, V., Gan, M.: Temperature dependent nanomechanics of si-c-n nanocomposites with an account of particle clustering and grain boundaries. Submitted to. Int. J. Hydrogen Energy (2009)
31.
Zurück zum Zitat Niihara, K., Izaki, K., Kawakami, T.: Hot-pressed Si3N4-32%SiC nanocomposites from amorphous Si-C-N powder with improved strength above 1,200 °C. J. Mater Sci. Lett. 10, 112–114 (1990)CrossRef Niihara, K., Izaki, K., Kawakami, T.: Hot-pressed Si3N4-32%SiC nanocomposites from amorphous Si-C-N powder with improved strength above 1,200 °C. J. Mater Sci. Lett. 10, 112–114 (1990)CrossRef
32.
Zurück zum Zitat Wan, J., Duan, R.-G., Gasch, M.J., Mukherjee, A.K.: Highly creep-resistant silicon nitride/silicon carbide nano–nano composites. J. Am. Ceram. Soc. 89(1), 274–280 (2006)CrossRef Wan, J., Duan, R.-G., Gasch, M.J., Mukherjee, A.K.: Highly creep-resistant silicon nitride/silicon carbide nano–nano composites. J. Am. Ceram. Soc. 89(1), 274–280 (2006)CrossRef
33.
Zurück zum Zitat Niihara, K.: New design concept for structural ceramics-ceramic nanocomposites. J. Ceram. Soc. Jpn: Centennial Memorial Issue 99(10), 974–982 (1991)CrossRef Niihara, K.: New design concept for structural ceramics-ceramic nanocomposites. J. Ceram. Soc. Jpn: Centennial Memorial Issue 99(10), 974–982 (1991)CrossRef
34.
Zurück zum Zitat Trick, K.A., Saliba, T.E.: Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon 33, 1509–1515 (1995)CrossRef Trick, K.A., Saliba, T.E.: Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon 33, 1509–1515 (1995)CrossRef
35.
Zurück zum Zitat Chen, Y., Chen, P., Hong, C., Zhang, B., Hui, D.: Improved ablation resistance of carbon–phenolic composites by introducing zirconium diboride particles. Compos. B 47, 320–325 (2013)CrossRef Chen, Y., Chen, P., Hong, C., Zhang, B., Hui, D.: Improved ablation resistance of carbon–phenolic composites by introducing zirconium diboride particles. Compos. B 47, 320–325 (2013)CrossRef
36.
Zurück zum Zitat Vaia, R.A., Price, G., Ruth, P.N., Nguyen, H.T., Lichtenhan, J.: Polymer/layered silicate nanocomposites as high performance ablative materials. Appl. Clay Sci. 15, 67–92 (1999)CrossRef Vaia, R.A., Price, G., Ruth, P.N., Nguyen, H.T., Lichtenhan, J.: Polymer/layered silicate nanocomposites as high performance ablative materials. Appl. Clay Sci. 15, 67–92 (1999)CrossRef
37.
Zurück zum Zitat Abdalla, M.O., Ludwick, A., Mitchell, T.: Boron-modified phenolic resin for high performance application. Polymer 44, 7353–7359 (2003)CrossRef Abdalla, M.O., Ludwick, A., Mitchell, T.: Boron-modified phenolic resin for high performance application. Polymer 44, 7353–7359 (2003)CrossRef
38.
Zurück zum Zitat Corral, E.L., Walker, L.S.: Improved ablation resistance of C–C composites using zirconium diboride and boron carbide. J. Eur. Ceram. Soc. 30(11), 2357–2364 (2010)CrossRef Corral, E.L., Walker, L.S.: Improved ablation resistance of C–C composites using zirconium diboride and boron carbide. J. Eur. Ceram. Soc. 30(11), 2357–2364 (2010)CrossRef
39.
Zurück zum Zitat Pulci, G., Tirillò, J., Fossati, F., Bartuli, C., Valente, T.: Carbon–phenolic ablative materials for re-entry space vehicle: Manufacturing and properties. Compos. Part A: Appl. Sci. Manuf. 41(10), 1483–1490 (2010)CrossRef Pulci, G., Tirillò, J., Fossati, F., Bartuli, C., Valente, T.: Carbon–phenolic ablative materials for re-entry space vehicle: Manufacturing and properties. Compos. Part A: Appl. Sci. Manuf. 41(10), 1483–1490 (2010)CrossRef
40.
Zurück zum Zitat Bahramian, A.R., et al.: High temperature ablation of kaolinite layered silicate/phenolic resin/asbestos cloth nanocomposite. J. Hazard. Mater. 150, 136–145 (2008)CrossRef Bahramian, A.R., et al.: High temperature ablation of kaolinite layered silicate/phenolic resin/asbestos cloth nanocomposite. J. Hazard. Mater. 150, 136–145 (2008)CrossRef
41.
Zurück zum Zitat Kashiwagi, T., Harris, R.H., Zhang, X., Briber, R.M., Cipriano, B.H., Raghavan, S.R., Awad, W.H., Shields, J.R.: Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer 45, 881–891 (2004)CrossRef Kashiwagi, T., Harris, R.H., Zhang, X., Briber, R.M., Cipriano, B.H., Raghavan, S.R., Awad, W.H., Shields, J.R.: Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer 45, 881–891 (2004)CrossRef
42.
Zurück zum Zitat Vaia, R.A., Price, G., Ruth, P.N., Nguyen, H.T., Lichtenhan, J.: Polymer/layered silicate nanocomposites as high performance ablative materials. Appl. Clay Sci. 15, 67–92 (1999)CrossRef Vaia, R.A., Price, G., Ruth, P.N., Nguyen, H.T., Lichtenhan, J.: Polymer/layered silicate nanocomposites as high performance ablative materials. Appl. Clay Sci. 15, 67–92 (1999)CrossRef
43.
Zurück zum Zitat Collins, TJ, et al.: High-temperature structures, adhesives, and advanced thermal protection materials for next-generation Aeroshell design Collins, TJ, et al.: High-temperature structures, adhesives, and advanced thermal protection materials for next-generation Aeroshell design
44.
Zurück zum Zitat Golub, M.A., Parker, J.A.: Polymeric materials for unusual service conditions. J. App. Poly. Sci., Appl. Poly. Symp. No. 22 Board (1973) Golub, M.A., Parker, J.A.: Polymeric materials for unusual service conditions. J. App. Poly. Sci., Appl. Poly. Symp. No. 22 Board (1973)
45.
Zurück zum Zitat Srikanth, I., et al.: Mechanical, thermal and ablative properties of zirconia, CNT modified carbon/phenolic composites. Compos. Sci. Technol. 80, 1–7 (2013)CrossRef Srikanth, I., et al.: Mechanical, thermal and ablative properties of zirconia, CNT modified carbon/phenolic composites. Compos. Sci. Technol. 80, 1–7 (2013)CrossRef
46.
Zurück zum Zitat Zhang, X., Xu, L., Du, S., Han, W., Han, J.: Crack-healing behavior of zirconium diboride composite reinforced with silicon carbide whiskers. Scripta Mater. 59, 1222–1225 (2008)CrossRef Zhang, X., Xu, L., Du, S., Han, W., Han, J.: Crack-healing behavior of zirconium diboride composite reinforced with silicon carbide whiskers. Scripta Mater. 59, 1222–1225 (2008)CrossRef
Metadaten
Titel
High Temperature Polymer Nanocomposites
verfasst von
K. Balasubramanian
Manoj Tirumalai
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-40322-4_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.