Skip to main content
Erschienen in: Journal of Materials Science 4/2016

15.10.2015 | Original Paper

High-temperature spin dynamics studied by solid-state nuclear resonance and electron paramagnetic resonance in 29Si:B crystals

verfasst von: R. B. Morgunov, O. V. Koplak

Erschienen in: Journal of Materials Science | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The relaxation of nuclear magnetization in the 29Si:B crystals obeys power-law kinetics at 300 K due to direct electron–nuclear relaxation. Admixture of the exponential relaxation associated with spin diffusion was revealed at higher temperatures. The inhomogeneous distribution of linear deformation defects was revealed by electron paramagnetic resonance. This factor mainly contributes to power-law kinetics of nuclear spin relaxation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hui HT (2006) Numerical method for determination of the NMR frequency of the single-qubit operation in a silicon-based solid-state quantum computer. Phys Rev B 74:195309CrossRef Hui HT (2006) Numerical method for determination of the NMR frequency of the single-qubit operation in a silicon-based solid-state quantum computer. Phys Rev B 74:195309CrossRef
2.
Zurück zum Zitat Zwanenburg FA, Dzurak AS, Morello A, Simmons MY, Hollenberg LCL, Klimeck G, Rogge S, Coppersmith SN, Eriksson MA (2013) Silicon quantum electronics. Rev Mod Phys 85:961–1019CrossRef Zwanenburg FA, Dzurak AS, Morello A, Simmons MY, Hollenberg LCL, Klimeck G, Rogge S, Coppersmith SN, Eriksson MA (2013) Silicon quantum electronics. Rev Mod Phys 85:961–1019CrossRef
3.
Zurück zum Zitat Shlimak I, Safarov VI, Vagner ID (2001) Isotopically engineered silicon/silicon-germanium nanostructures as basic elements for a nuclear spin quantum computer. J Phys 13:6059 Shlimak I, Safarov VI, Vagner ID (2001) Isotopically engineered silicon/silicon-germanium nanostructures as basic elements for a nuclear spin quantum computer. J Phys 13:6059
4.
Zurück zum Zitat Itoh KM (2005) An all-silicon linear chain NMR quantum computer. Solid State Commun 133:747CrossRef Itoh KM (2005) An all-silicon linear chain NMR quantum computer. Solid State Commun 133:747CrossRef
5.
Zurück zum Zitat Kane BE (1998) A silicon-based nuclear spin quantum computer. Nature 393:133–137CrossRef Kane BE (1998) A silicon-based nuclear spin quantum computer. Nature 393:133–137CrossRef
6.
Zurück zum Zitat Simmons S, Brown RM, Riemann H, Abrosimov NV, Becker P, Pohl H, Thewalt MLW, Itoh KM, Morton JJL (2011) Entanglement in a solid-state spin ensemble. Nature 470:69–72CrossRef Simmons S, Brown RM, Riemann H, Abrosimov NV, Becker P, Pohl H, Thewalt MLW, Itoh KM, Morton JJL (2011) Entanglement in a solid-state spin ensemble. Nature 470:69–72CrossRef
7.
Zurück zum Zitat Stegner AR, Tezuka H, Riemann H, Abrosimov NV, Becker P, Pohl HJ, Thewalt MLW, Itoh KM, Brandt MS (2011) Correlation of residual impurity concentration and acceptor electron paramagnetic resonance linewidth in isotopically engineered Si. Appl Phys Lett 99:032101CrossRef Stegner AR, Tezuka H, Riemann H, Abrosimov NV, Becker P, Pohl HJ, Thewalt MLW, Itoh KM, Brandt MS (2011) Correlation of residual impurity concentration and acceptor electron paramagnetic resonance linewidth in isotopically engineered Si. Appl Phys Lett 99:032101CrossRef
8.
Zurück zum Zitat Hayashi H, Itoh KM, Vlasenko LS (2008) Nuclear magnetic resonance linewidth and spin diffusion in 29Si isotopically controlled silicon. Phys Rev B 78:153201CrossRef Hayashi H, Itoh KM, Vlasenko LS (2008) Nuclear magnetic resonance linewidth and spin diffusion in 29Si isotopically controlled silicon. Phys Rev B 78:153201CrossRef
9.
Zurück zum Zitat Hayashi H, Itahashi T, Itoh KM, Vlasenko LS, Vlasenko MP (2009) Nuclear magnetic resonance linewidth and spin diffusion in 29Si isotopically controlled silicon. Phys Rev B 80:045201CrossRef Hayashi H, Itahashi T, Itoh KM, Vlasenko LS, Vlasenko MP (2009) Nuclear magnetic resonance linewidth and spin diffusion in 29Si isotopically controlled silicon. Phys Rev B 80:045201CrossRef
10.
Zurück zum Zitat Fuller SE, Meintjes EM, Warren WW (1996) Impurity NMR study of the acceptor band in Si(B). Phys Rev Lett 76:2806CrossRef Fuller SE, Meintjes EM, Warren WW (1996) Impurity NMR study of the acceptor band in Si(B). Phys Rev Lett 76:2806CrossRef
11.
Zurück zum Zitat Sundfors RK, Holcomb DF (1964) Nuclear magnetic resonance studies of the metallic transition in doped silicon. Phys Rev 136:A810–A820CrossRef Sundfors RK, Holcomb DF (1964) Nuclear magnetic resonance studies of the metallic transition in doped silicon. Phys Rev 136:A810–A820CrossRef
12.
Zurück zum Zitat Neubrand H (1978) ESR from boron in silicon at zero and small external stress I. Line positions and line structure. Phys Status Solidi (b) 86:269–275CrossRef Neubrand H (1978) ESR from boron in silicon at zero and small external stress I. Line positions and line structure. Phys Status Solidi (b) 86:269–275CrossRef
13.
Zurück zum Zitat Bartelsen L (1977) The EPR fine structure spectrum of dislocations in silicon. Phys Status Solidi (b) 81:471–478CrossRef Bartelsen L (1977) The EPR fine structure spectrum of dislocations in silicon. Phys Status Solidi (b) 81:471–478CrossRef
14.
Zurück zum Zitat Stegner AR, Tezuka H, Andlauer T, Stutzmann M, Thewalt MLW, Brandt MS, Itoh KM (2010) Isotope effect on electron paramagnetic resonance of boron acceptors in silicon. Phys Rev B 82:115213CrossRef Stegner AR, Tezuka H, Andlauer T, Stutzmann M, Thewalt MLW, Brandt MS, Itoh KM (2010) Isotope effect on electron paramagnetic resonance of boron acceptors in silicon. Phys Rev B 82:115213CrossRef
15.
Zurück zum Zitat Tezuka H, Stegner AR, Tyryshkin AM, Shankar S, Thewalt MLW, Lyon SA, Itoh KM, Brandt MS (2010) Isotope effect on electron paramagnetic resonance of boron acceptors in silicon. Phys Rev B 81:161203(R)CrossRef Tezuka H, Stegner AR, Tyryshkin AM, Shankar S, Thewalt MLW, Lyon SA, Itoh KM, Brandt MS (2010) Isotope effect on electron paramagnetic resonance of boron acceptors in silicon. Phys Rev B 81:161203(R)CrossRef
16.
Zurück zum Zitat Bagraev NT, Gusarov AI, Mashkov VA (1987) Spin-dependent processes in one-dimensional disordered dangling-bond systems in semiconductors. J Exp Theor Phys 92:548–549 Bagraev NT, Gusarov AI, Mashkov VA (1987) Spin-dependent processes in one-dimensional disordered dangling-bond systems in semiconductors. J Exp Theor Phys 92:548–549
17.
Zurück zum Zitat Grazhulis VA, Ossipyan YuA (1971) Electron paramagnetic resonance of dislocations in silicon. J Exp Theor Phys 60:623–628 Grazhulis VA, Ossipyan YuA (1971) Electron paramagnetic resonance of dislocations in silicon. J Exp Theor Phys 60:623–628
18.
Zurück zum Zitat Weber ER, Alexander H (1983) Deep level defects in plastically deformed silicon. J Phys 44:C4-319–C4-328 Weber ER, Alexander H (1983) Deep level defects in plastically deformed silicon. J Phys 44:C4-319–C4-328
19.
Zurück zum Zitat Bagraev NT, Vlasenko LS (1982) Optical polarization of lattice nuclei in plastically deformed silicon. J Exp Theor Phys 83:1267–1274 Bagraev NT, Vlasenko LS (1982) Optical polarization of lattice nuclei in plastically deformed silicon. J Exp Theor Phys 83:1267–1274
20.
Zurück zum Zitat Edèn M (2012) NMR studies of oxide-based glasses. Annu Rep Prog Chem Sect C 108:177–221CrossRef Edèn M (2012) NMR studies of oxide-based glasses. Annu Rep Prog Chem Sect C 108:177–221CrossRef
21.
Zurück zum Zitat Verhulst AS, Maryenko D, Yamamoto Y, Itoh KM (2003) Double and single peaks in nuclear magnetic resonance spectra of natural and 29Si—enriched single-crystal silicon. Phys Rev B 68:054105CrossRef Verhulst AS, Maryenko D, Yamamoto Y, Itoh KM (2003) Double and single peaks in nuclear magnetic resonance spectra of natural and 29Si—enriched single-crystal silicon. Phys Rev B 68:054105CrossRef
22.
Zurück zum Zitat Devreux F, Boilot JP, Chaput F, Sapoval B (1990) NMR determination of the fractal dimension in silica aerogels. Phys Rev Lett 65:614CrossRef Devreux F, Boilot JP, Chaput F, Sapoval B (1990) NMR determination of the fractal dimension in silica aerogels. Phys Rev Lett 65:614CrossRef
23.
Zurück zum Zitat Sen S, Stebbins JF (1994) Phase separation, clustering, and fractal characteristics in glass: a magic-angle-spinning NMR spin-lattice relaxation study. Phys Rev B 50:822CrossRef Sen S, Stebbins JF (1994) Phase separation, clustering, and fractal characteristics in glass: a magic-angle-spinning NMR spin-lattice relaxation study. Phys Rev B 50:822CrossRef
24.
Zurück zum Zitat Blumberg WE (1960) Nuclear spin-lattice relaxation caused by paramagnetic impurities. Phys Rev 119:79CrossRef Blumberg WE (1960) Nuclear spin-lattice relaxation caused by paramagnetic impurities. Phys Rev 119:79CrossRef
25.
Zurück zum Zitat Le Guennec P, Nechtschein M, Travers JP (1993) Nonexponential NMR relaxations in heterogeneously doped solids. Phys Rev B 47:2893CrossRef Le Guennec P, Nechtschein M, Travers JP (1993) Nonexponential NMR relaxations in heterogeneously doped solids. Phys Rev B 47:2893CrossRef
26.
Zurück zum Zitat Feher G, Hensel JC, Gere EA (1960) Paramagnetic resonance absorption from acceptors in silicon. Phys Rev Lett 5:309CrossRef Feher G, Hensel JC, Gere EA (1960) Paramagnetic resonance absorption from acceptors in silicon. Phys Rev Lett 5:309CrossRef
27.
Zurück zum Zitat Skvortsov AA, Orlov AM, Gonchar LI (2001) The effect of a weak magnetic field on the mobility of dislocations in silicon. J Exp Theor Phys 93:117 (Rus. Translated from Zhurnal Éksperimental’noi Teoretichesko Fiziki, 120(1):134–138, 2001) CrossRef Skvortsov AA, Orlov AM, Gonchar LI (2001) The effect of a weak magnetic field on the mobility of dislocations in silicon. J Exp Theor Phys 93:117 (Rus. Translated from Zhurnal Éksperimental’noi Teoretichesko Fiziki, 120(1):134–138, 2001) CrossRef
28.
Zurück zum Zitat Yonenaga I, Takahashi K (2006) Effect of high-magnetic-field on dislocation-oxygen impurity interaction in Si. J Phys 51:407 Yonenaga I, Takahashi K (2006) Effect of high-magnetic-field on dislocation-oxygen impurity interaction in Si. J Phys 51:407
Metadaten
Titel
High-temperature spin dynamics studied by solid-state nuclear resonance and electron paramagnetic resonance in 29Si:B crystals
verfasst von
R. B. Morgunov
O. V. Koplak
Publikationsdatum
15.10.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 4/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9490-2

Weitere Artikel der Ausgabe 4/2016

Journal of Materials Science 4/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.