Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 10/2020

28.07.2020 | Metallurgical and Materials Transactions 50th Anniversary Collection

High-Throughput and Systematic Study of Phase Transformations and Metastability Using Dual-Anneal Diffusion Multiples

verfasst von: Ji-Cheng Zhao

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article highlights the capabilities of dual-anneal diffusion multiples (DADMs) in performing high-throughput and systematic studies of phase transformations and metastability. DADMs create wide ranges of solid solution compositions through elemental interdiffusion during a first anneal at a high temperature. After quenching to ambient temperature, each diffusion multiple can be cut into several slices, and each slice is further annealed individually at a lower/second temperature. Phase transformations take place in the supersaturated regions of the solid solution compositions that are formed during the first anneal, leading to various precipitates due to different driving force, interfacial energy, and other factors as composition varies across the regions in the sample. By subjecting the sliced diffusion multiples individually to different anneal durations and different second anneal temperatures, very large datasets can be collected on phase transformation kinetics and evolution of precipitate morphology as a function of composition, time, and temperature. Metastable phases and their transitions to more stable phases have been systematically observed in the Fe-Cr-Mo ternary system across a wide range of composition, temperature, and anneal time, thus providing a large amount of information on metastability of the phases. The solvi of the metastable and stable phases can be systematically collected for more reliable CALPHAD assessments of the Gibbs free energy of the metastable phases. By adjusting the interfacial energy value in simulations using models such as the Kampmann–Wagner Numerical (KWN) model and matching the simulated precipitate sizes at different compositions with experimentally measured sizes of the corresponding compositions in a DADM, the interfacial energy value can be obtained. Opportunities and challenges in using DADMs to collect large datasets on precipitation kinetics and morphology will be explained to enable full utilization of the capabilities of DADMs in the future. This review not only presents experimental results collected to date, but also explains the vast more datasets that can be collected from DADMs in the future. An approach that iteratively and holistically integrates experimental results with model predictions is advocated as a very effective means to advance the understanding of various phase transformation mechanisms. In this way, the new mechanistic understanding can be integrated to more robust models to simulate the “abnormal” behaviors that are observed in DADMs, especially related to sequential precipitations of phases that are common in engineering alloys. Examples are also shown to illustrate the systematic nature of DADMs as a result of their continuously varying composition regions in catching unusual phenomena and emergent trends that are easily missed during studies using discrete compositions afforded by individual alloys.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat [1] J.-C. Zhao, Adv. Eng. Mater., 2001, vol. 3, pp. 143–147. [1] J.-C. Zhao, Adv. Eng. Mater., 2001, vol. 3, pp. 143–147.
2.
Zurück zum Zitat [2] S. Cao and J.-C. Zhao, Acta Mater., 2015, vol. 88, pp. 196–206. [2] S. Cao and J.-C. Zhao, Acta Mater., 2015, vol. 88, pp. 196–206.
3.
Zurück zum Zitat [3] S. Cao and J.-C. Zhao, J. Phase Equili. Diffus., 2016, vol. 37, pp. 25–38. [3] S. Cao and J.-C. Zhao, J. Phase Equili. Diffus., 2016, vol. 37, pp. 25–38.
4.
Zurück zum Zitat [4] L. Zhu, C. Wei, H. Qi, L. Jiang, Z. Jin, and J.-C. Zhao, J. Alloys Comp., 2017, vol. 691, pp. 110–118. [4] L. Zhu, C. Wei, H. Qi, L. Jiang, Z. Jin, and J.-C. Zhao, J. Alloys Comp., 2017, vol. 691, pp. 110–118.
5.
Zurück zum Zitat [5] L. Zhu, C. Wei, L. Jiang, Z. Jin, and J.-C. Zhao, Intermetallics, 2018, vol. 93, pp. 20–29. [5] L. Zhu, C. Wei, L. Jiang, Z. Jin, and J.-C. Zhao, Intermetallics, 2018, vol. 93, pp. 20–29.
6.
Zurück zum Zitat [6] Q. Zhang and J.-C. Zhao, Intermetallics, 2013, vol. 34, pp. 132–141. [6] Q. Zhang and J.-C. Zhao, Intermetallics, 2013, vol. 34, pp. 132–141.
7.
Zurück zum Zitat [7] Q. Zhang and J.-C. Zhao, J. Alloys Compd., 2014, vol. 604, pp. 142–150. [7] Q. Zhang and J.-C. Zhao, J. Alloys Compd., 2014, vol. 604, pp. 142–150.
8.
Zurück zum Zitat [8] Q. Zhang, Z. Chen, W. Zhong, and J.-C. Zhao, Scripta Mater., 2017, vol. 128, pp. 32–35. [8] Q. Zhang, Z. Chen, W. Zhong, and J.-C. Zhao, Scripta Mater., 2017, vol. 128, pp. 32–35.
9.
Zurück zum Zitat [9] L. Zhu, Q. Zhang, Z. Chen, C. Wei, G. Cai, L. Jiang, Z. Jin, and J.-C. Zhao, J. Mater. Sci., 2017. vol. 52, pp. 3255–3268. [9] L. Zhu, Q. Zhang, Z. Chen, C. Wei, G. Cai, L. Jiang, Z. Jin, and J.-C. Zhao, J. Mater. Sci., 2017. vol. 52, pp. 3255–3268.
10.
Zurück zum Zitat [10] Z. Chen, Z.-K. Liu, and J.-C. Zhao, Metall. Mater. Trans. A, 2018, vol. 49, pp. 3108–3116. [10] Z. Chen, Z.-K. Liu, and J.-C. Zhao, Metall. Mater. Trans. A, 2018, vol. 49, pp. 3108–3116.
11.
Zurück zum Zitat [11] J.-C. Zhao, Prog. Mater. Sci., 2006, vol. 51, pp. 557–631. [11] J.-C. Zhao, Prog. Mater. Sci., 2006, vol. 51, pp. 557–631.
12.
Zurück zum Zitat [12] S. Huxtable, D.G. Cahill, V. Fauconnier, J.O. White, and J.-C. Zhao, Nature Mater., 2004, vol. 3, pp. 298–301. [12] S. Huxtable, D.G. Cahill, V. Fauconnier, J.O. White, and J.-C. Zhao, Nature Mater., 2004, vol. 3, pp. 298–301.
13.
Zurück zum Zitat [13] J.-C. Zhao, X. Zheng, and D.G. Cahill, Scripta Mater., 2012, vol. 66, pp. 935–938. [13] J.-C. Zhao, X. Zheng, and D.G. Cahill, Scripta Mater., 2012, vol. 66, pp. 935–938.
14.
Zurück zum Zitat [14] C. Wei, X. Zheng, D.G. Cahill, and J.-C. Zhao, Rev. Sci. Instr., 2013, vol. 84, 071301. [14] C. Wei, X. Zheng, D.G. Cahill, and J.-C. Zhao, Rev. Sci. Instr., 2013, vol. 84, 071301.
15.
Zurück zum Zitat [15] X. Zheng, D.G. Cahill, R. Weaver, and J.-C. Zhao, J. Appl. Phys., 2008, vol. 104, 073509. [15] X. Zheng, D.G. Cahill, R. Weaver, and J.-C. Zhao, J. Appl. Phys., 2008, vol. 104, 073509.
16.
Zurück zum Zitat X. Du and J.-C. Zhao, NPJ Comput. Mater. 2017, vol. 3, pp. 17–17. X. Du and J.-C. Zhao, NPJ Comput. Mater. 2017, vol. 3, pp. 17–17.
17.
Zurück zum Zitat [17] X. Du and J.-C. Zhao, Scripta Mater., 2018, vol. 152, pp. 24–26. [17] X. Du and J.-C. Zhao, Scripta Mater., 2018, vol. 152, pp. 24–26.
18.
Zurück zum Zitat [18] W.C. Oliver and G.M. Pharr, J. Mater. Res., 1992, vol. 7, pp. 1564–1583. [18] W.C. Oliver and G.M. Pharr, J. Mater. Res., 1992, vol. 7, pp. 1564–1583.
19.
Zurück zum Zitat [19] W.C. Oliver and G.M. Pharr, J. Mater. Res., 2004, vol. 19, pp. 3–20. [19] W.C. Oliver and G.M. Pharr, J. Mater. Res., 2004, vol. 19, pp. 3–20.
20.
Zurück zum Zitat [20] A. Borgenstam and M. Hillert, Acta Mater., 2000, vol. 48, pp. 2765–2775. [20] A. Borgenstam and M. Hillert, Acta Mater., 2000, vol. 48, pp. 2765–2775.
21.
Zurück zum Zitat A. Borgenstam and J.M. Ericsson, in Proceedings of the International Conference on Solid–Solid Phase Transformations in Inorganic Materials 2005, Edited by J.M. Howe, D.E. Laughlin, J.K. Lee, U. Dahmen and W.A. Soffa, Wiley-TMS, 2005, pp. 105–10. A. Borgenstam and J.M. Ericsson, in Proceedings of the International Conference on Solid–Solid Phase Transformations in Inorganic Materials 2005, Edited by J.M. Howe, D.E. Laughlin, J.K. Lee, U. Dahmen and W.A. Soffa, Wiley-TMS, 2005, pp. 105–10.
22.
Zurück zum Zitat [22] A. Phillion, H.W. Zurob, C.R. Hutchinson, H. Guo, D.V. Malakhov, J. Nakano, and G.R. Purdy, Metall. Mater. Trans. A, 2004, vol. 35, pp. 1237–1242. [22] A. Phillion, H.W. Zurob, C.R. Hutchinson, H. Guo, D.V. Malakhov, J. Nakano, and G.R. Purdy, Metall. Mater. Trans. A, 2004, vol. 35, pp. 1237–1242.
23.
Zurück zum Zitat [23] C.R. Hutchinson, A. Fuchsmann, H.S. Zurob, and Y. Bréchet, Scripta Mater., 2004, vol. 50, pp. 285–290. [23] C.R. Hutchinson, A. Fuchsmann, H.S. Zurob, and Y. Bréchet, Scripta Mater., 2004, vol. 50, pp. 285–290.
24.
Zurück zum Zitat [24] C.W. Sinclair, C.R. Hutchinson, and Y. Bréchet, Metall. Mater. Trans. A, 2007, vol. 38, pp. 821–830. [24] C.W. Sinclair, C.R. Hutchinson, and Y. Bréchet, Metall. Mater. Trans. A, 2007, vol. 38, pp. 821–830.
25.
Zurück zum Zitat [25] S. Hata, K. Shiraishi, M. Itakura, N. Kuwano, T. Nakano, and Y. Umakoshi, Philos. Mag. Lett., 2005, vol. 85, pp. 175–185. [25] S. Hata, K. Shiraishi, M. Itakura, N. Kuwano, T. Nakano, and Y. Umakoshi, Philos. Mag. Lett., 2005, vol. 85, pp. 175–185.
26.
Zurück zum Zitat E. Contreras-Piedras, H.J. Dorantes-Rosales, V.M. López-Hirata, F. HernándezSantiago, J.L. González-Velázquez, and F.I. López-Monrroy, Mater. Sci. Eng. A, 2012, vol. 558, pp. 366–370. E. Contreras-Piedras, H.J. Dorantes-Rosales, V.M. López-Hirata, F. HernándezSantiago, J.L. González-Velázquez, and F.I. López-Monrroy, Mater. Sci. Eng. A, 2012, vol. 558, pp. 366–370.
27.
Zurück zum Zitat [27] T. Miyazaki, Prog. Mater. Sci., 2012, vol. 57, pp. 1010–1060. [27] T. Miyazaki, Prog. Mater. Sci., 2012, vol. 57, pp. 1010–1060.
28.
Zurück zum Zitat [28] R.K.W. Marceau, C. Qiu, S.P. Ringer, and C.R. Hutchinson, Mater. Sci. Eng. A, 2012, vol. 546, pp. 153–161. [28] R.K.W. Marceau, C. Qiu, S.P. Ringer, and C.R. Hutchinson, Mater. Sci. Eng. A, 2012, vol. 546, pp. 153–161.
29.
Zurück zum Zitat F. De Geuser, M.J. Styles, C.R. Hutchinson, and A. Deschamps, Acta Mater., 2015, vol. 101, pp. 1–9. F. De Geuser, M.J. Styles, C.R. Hutchinson, and A. Deschamps, Acta Mater., 2015, vol. 101, pp. 1–9.
30.
Zurück zum Zitat E. Gumbmann, F. De Geuser, A. Deschamps, W. Lefebvre, F. Robaut, and C. Sigli, Scripta Mater., vol. 110, pp. 44–47 (2016). E. Gumbmann, F. De Geuser, A. Deschamps, W. Lefebvre, F. Robaut, and C. Sigli, Scripta Mater., vol. 110, pp. 44–47 (2016).
31.
Zurück zum Zitat [31] R. Ivanov, A. Deschamps, and F. De Geuser, Scripta Mater., 2018, vol. 150, pp. 156–159. [31] R. Ivanov, A. Deschamps, and F. De Geuser, Scripta Mater., 2018, vol. 150, pp. 156–159.
32.
Zurück zum Zitat [32] Q. Zhang, S.K. Makineni, J. Allison, and J.-C. Zhao, Scripta Mater., 2019, vol. 160, pp. 70–74. [32] Q. Zhang, S.K. Makineni, J. Allison, and J.-C. Zhao, Scripta Mater., 2019, vol. 160, pp. 70–74.
33.
Zurück zum Zitat R. Kampmann and R. Wagner, in Decomposition of Alloys: The Early Stages, Pergamon, Oxford, 1984, pp. 91–103. R. Kampmann and R. Wagner, in Decomposition of Alloys: The Early Stages, Pergamon, Oxford, 1984, pp. 91–103.
34.
Zurück zum Zitat R. Wagner, R. Kampmann and P. W. Voorhees, in Phase Transformations in Materials, Edited by Gernot Kostorz, Weinheim: Wiley, 2001, pp. 309–407. R. Wagner, R. Kampmann and P. W. Voorhees, in Phase Transformations in Materials, Edited by Gernot Kostorz, Weinheim: Wiley, 2001, pp. 309–407.
35.
Zurück zum Zitat [35] A. Borgenstam, L. Höglund, J. Ågren, and A. Engström, J. Phase Equili., 2000, vol. 21, pp. 269–280. [35] A. Borgenstam, L. Höglund, J. Ågren, and A. Engström, J. Phase Equili., 2000, vol. 21, pp. 269–280.
36.
Zurück zum Zitat [36] B. Sundman, B. Jansson, and J.-O. Andersson, CALPHAD, 1985, vol. 9, pp. 153–190. [36] B. Sundman, B. Jansson, and J.-O. Andersson, CALPHAD, 1985, vol. 9, pp. 153–190.
37.
Zurück zum Zitat J-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Calphad, 2002, vol. 26, pp. 273–312. J-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Calphad, 2002, vol. 26, pp. 273–312.
38.
Zurück zum Zitat [38] C. Zener, J. Appl. Phys, 1949, vol. 20, pp. 950–953. [38] C. Zener, J. Appl. Phys, 1949, vol. 20, pp. 950–953.
39.
Zurück zum Zitat [39] I. Lifshitz and V. Slyozov, J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50. [39] I. Lifshitz and V. Slyozov, J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.
40.
Zurück zum Zitat [40] C. Wagner, Z. Elektrochem., 1961, vol. 65, pp. 581–591. [40] C. Wagner, Z. Elektrochem., 1961, vol. 65, pp. 581–591.
41.
Zurück zum Zitat [41] M. Perez, M. Dumont, and D. Acevedo-Reyes, Acta Mater., 2008, vol. 56, pp. 2119–2132. [41] M. Perez, M. Dumont, and D. Acevedo-Reyes, Acta Mater., 2008, vol. 56, pp. 2119–2132.
42.
Zurück zum Zitat Q. Chen, J. Jeppsson, and J. Ågren, Acta Mater., 2008, vol. 56, pp. 1890–1896. Q. Chen, J. Jeppsson, and J. Ågren, Acta Mater., 2008, vol. 56, pp. 1890–1896.
43.
Zurück zum Zitat [43] Q. Chen, K. Wu, G. Sterner, and P. Mason, J. Mater. Eng. Perf., 2014, vol. 23, pp. 4193–4196. [43] Q. Chen, K. Wu, G. Sterner, and P. Mason, J. Mater. Eng. Perf., 2014, vol. 23, pp. 4193–4196.
44.
Zurück zum Zitat [44] L.-Q. Chen, Annu. Rev. Mater. Sci., 2002, vol. 32, pp. 113–140. [44] L.-Q. Chen, Annu. Rev. Mater. Sci., 2002, vol. 32, pp. 113–140.
45.
Zurück zum Zitat [45] J.P. Simmons, C. Shen, Y. Wang, Scripta Mater., 2000, vol, 43, pp. 935–942. [45] J.P. Simmons, C. Shen, Y. Wang, Scripta Mater., 2000, vol, 43, pp. 935–942.
46.
Zurück zum Zitat [46] R. Becker, Ann. Phys., 1938, vol. 424, pp. 128–140. [46] R. Becker, Ann. Phys., 1938, vol. 424, pp. 128–140.
47.
Zurück zum Zitat [47] K. Wu, Q. Chen, and P. Mason, J. Phase Equili. Diffu., 2018, vol. 39, pp. 571–583. [47] K. Wu, Q. Chen, and P. Mason, J. Phase Equili. Diffu., 2018, vol. 39, pp. 571–583.
48.
Zurück zum Zitat [48] D. Bardel, M. Perez, D. Nelias, A. Deschamps, C.R. Hutchinson, D. Maisonnette, T. Chaise, J. Garnier, and F. Bourlier. Acta Mater., 2014, vol. 62, pp. 129–140. [48] D. Bardel, M. Perez, D. Nelias, A. Deschamps, C.R. Hutchinson, D. Maisonnette, T. Chaise, J. Garnier, and F. Bourlier. Acta Mater., 2014, vol. 62, pp. 129–140.
49.
Zurück zum Zitat [49] B. Holmedal, E. Osmundsen, and Q. Du, Metall. Mater. Trans. A., 2016, vol. 47, p.. 581–588. [49] B. Holmedal, E. Osmundsen, and Q. Du, Metall. Mater. Trans. A., 2016, vol. 47, p.. 581–588.
50.
Zurück zum Zitat [50] Q. Du, B. Holmedal, J. Friis, and C. D. Marioara, Metall. Mater. Trans. A., 2016, vol. 47, pp. 589–599. [50] Q. Du, B. Holmedal, J. Friis, and C. D. Marioara, Metall. Mater. Trans. A., 2016, vol. 47, pp. 589–599.
51.
Zurück zum Zitat [51] M. Perez and A. Deschamps, Mater. Sci. Eng. A., 2003, vol. 360, pp. 214–219. [51] M. Perez and A. Deschamps, Mater. Sci. Eng. A., 2003, vol. 360, pp. 214–219.
52.
Zurück zum Zitat [52] Q. Du, K. Tang, C. D. Marioara, S. J. Andersen, B. Holmedal, and R. Holmestad, Acta Mater., 2017, vol. 122, pp. 178–186. [52] Q. Du, K. Tang, C. D. Marioara, S. J. Andersen, B. Holmedal, and R. Holmestad, Acta Mater., 2017, vol. 122, pp. 178–186.
53.
Zurück zum Zitat J. Murray, ‘Al-Cu (Aluminum-Copper)’, Phase Diagrams of Binary Copper Alloys, P.R. Subramanian, D.J. Chakrabarti, and D. E. Laughlin, Ed., ASM International, Materials Park, Ohio, 1994, pp. 18–42. J. Murray, ‘Al-Cu (Aluminum-Copper)’, Phase Diagrams of Binary Copper Alloys, P.R. Subramanian, D.J. Chakrabarti, and D. E. Laughlin, Ed., ASM International, Materials Park, Ohio, 1994, pp. 18–42.
54.
Zurück zum Zitat [54] K. Matsuyama, Kinzoku no Kenkyu, 1934, vol. 11, pp. 461–490. [54] K. Matsuyama, Kinzoku no Kenkyu, 1934, vol. 11, pp. 461–490.
55.
Zurück zum Zitat [55] G. Borelius, J. Anderson, and K. Gullberg, Ing. Vetenskaps Akad. Handl., 1943, vol. 169, pp. 5–37. [55] G. Borelius, J. Anderson, and K. Gullberg, Ing. Vetenskaps Akad. Handl., 1943, vol. 169, pp. 5–37.
56.
Zurück zum Zitat R. H. Beton, Beton, and E.C. Rollason, J. Inst. Met., 1957-1958, vol. 86, pp. 77–84. R. H. Beton, Beton, and E.C. Rollason, J. Inst. Met., 1957-1958, vol. 86, pp. 77–84.
57.
Zurück zum Zitat [57] R. Baur and V. Gerold, Z. Metall., 1966, vol, 57, pp. 181–186. [57] R. Baur and V. Gerold, Z. Metall., 1966, vol, 57, pp. 181–186.
58.
Zurück zum Zitat [58] R. Baur, Z. Metall., 1966, vol, 57, pp. 275–280. [58] R. Baur, Z. Metall., 1966, vol, 57, pp. 275–280.
59.
Zurück zum Zitat [59] H. Hori and K. Hirano, J. Jpn. Inst. Met., 1973, vol. 37, pp. 142–148. [59] H. Hori and K. Hirano, J. Jpn. Inst. Met., 1973, vol. 37, pp. 142–148.
60.
Zurück zum Zitat [60] K.G. Satyanarayana, K. Jayapalan, T.R. Ananthraman, Current Sci., 1973, vol. 41 (1), pp. 6–9. [60] K.G. Satyanarayana, K. Jayapalan, T.R. Ananthraman, Current Sci., 1973, vol. 41 (1), pp. 6–9.
61.
Zurück zum Zitat [61] A.M. Zahra, M. Laffitte, P. Vigier, and M. Wintenberger, C.R. Acad. Sci., 1973, vol. 277, pp. 923–925. [61] A.M. Zahra, M. Laffitte, P. Vigier, and M. Wintenberger, C.R. Acad. Sci., 1973, vol. 277, pp. 923–925.
62.
Zurück zum Zitat [62] H.-L. Chen, Q. Chen, J. Bratberg, and A. Engström, Mater. Today Proc., 2015, vol. 2, pp. 4939–4948. [62] H.-L. Chen, Q. Chen, J. Bratberg, and A. Engström, Mater. Today Proc., 2015, vol. 2, pp. 4939–4948.
63.
Zurück zum Zitat [63] R.J. Thompson, J.-C. Zhao, and K.J. Hemker, Intermetallics, 2010, vol. 18, pp. 796–802. [63] R.J. Thompson, J.-C. Zhao, and K.J. Hemker, Intermetallics, 2010, vol. 18, pp. 796–802.
64.
Zurück zum Zitat [64] C. Wei and J.-C. Zhao, Materialia, 2018, vol. 3, pp. 31–40. [64] C. Wei and J.-C. Zhao, Materialia, 2018, vol. 3, pp. 31–40.
Metadaten
Titel
High-Throughput and Systematic Study of Phase Transformations and Metastability Using Dual-Anneal Diffusion Multiples
verfasst von
Ji-Cheng Zhao
Publikationsdatum
28.07.2020
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 10/2020
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-020-05915-w

Weitere Artikel der Ausgabe 10/2020

Metallurgical and Materials Transactions A 10/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.