Skip to main content

2017 | OriginalPaper | Buchkapitel

42. High Volume Manufacturing and Field Stability of MEMS Products

verfasst von : T. Kieran Nunan, Mark G. da Silva

Erschienen in: Springer Handbook of Nanotechnology

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Low-volume microelectromechanical systems (MEMS)/nanoelectromechanical systems (NEMS) production is practical when an attractive concept is implemented with business, manufacturing, packaging, and test support. Moving beyond this to high-volume production adds requirements on design, process control, quality, product stability, market size, market maturity, internal capacity, and capital investment or transfer to foundry and business systems. In a broad sense, this chapter uses a case study approach: It describes and compares the silicon-based MEMS accelerometers and gyroscopes that are in high-volume production. What is described here also applies to other MEMS products such as pressure sensors, image projection systems, microphones, etc. Although they serve several markets, these businesses have common characteristics. For example, the manufacturing lines use automated semiconductor equipment and standard material sets to make consistent products in large quantities. Standard well-controlled processes are sometimes modified for a MEMS product. However, novel processes that cannot run with standard equipment and material sets are avoided when possible. When transferring to an external foundry, existing processes are modified to utilize the foundry equipment and processes where possible. This reliance on semiconductor tools, as well as the organizational practices required to manufacture clean, particle-free products, partially explains why the MEMS market leaders are integrated circuit manufacturers. There are other factors. MEMS and NEMS are enabling technologies, so it can take several years for high-volume applications to develop. Indeed, market size is usually a strong function of price. This becomes a vicious circle, because low price requires low cost – a result that is normally achieved only after a product is in high-volume production. During the early years, IC companies reduce cost and financial risk by using existing facilities for low-volume MEMS production. As a result, product architectures are partially determined by capabilities developed for previous products. This chapter includes a discussion of MEMS product architecture with particular attention to the impact of electronic integration, packaging, and surfaces. Packaging and testing are critical, because they are significant factors in MEMS product cost. MEMS devices have extremely high surface-to-volume ratio, so performance and stability may depend on the control of surface characteristics after packaging. Looking into the future, the competitive advantage of IC suppliers is decreasing because MEMS foundries are growing and small companies are learning to integrate MEMS/NEMS devices with die from CMOS foundries in one package. Packaging challenges still remain, because most MEMS/NEMS products must interact with the environment without degrading stability or reliability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
42.1
Zurück zum Zitat J. Martin: High volume manufacturing and field stability of MEMS products. In: Springer Handbook of Nanotechnology (Springer, Berlin, Heidelberg 2010) J. Martin: High volume manufacturing and field stability of MEMS products. In: Springer Handbook of Nanotechnology (Springer, Berlin, Heidelberg 2010)
42.3
Zurück zum Zitat T.A. Core, W.K. Tsang, S.J. Sherman: Fabrication technology for an integrated surface-micromachined sensor, Solid State Technol 36(10), 39–47 (1993) T.A. Core, W.K. Tsang, S.J. Sherman: Fabrication technology for an integrated surface-micromachined sensor, Solid State Technol 36(10), 39–47 (1993)
42.4
Zurück zum Zitat K. Nunan, G. Ready, J. Sledziewski: LPCVD & PECVD operations designed for iMEMS sensor devices, Vac. Technol. Coat. 2(1), 26–37 (2001) K. Nunan, G. Ready, J. Sledziewski: LPCVD & PECVD operations designed for iMEMS sensor devices, Vac. Technol. Coat. 2(1), 26–37 (2001)
42.5
Zurück zum Zitat K.H. Chau, R.E. Suloff: Technology for the high-volume manufacturing of integrated surface-micromachined accelerometer products, Microelectron. J. 29, 579–586 (1998)CrossRef K.H. Chau, R.E. Suloff: Technology for the high-volume manufacturing of integrated surface-micromachined accelerometer products, Microelectron. J. 29, 579–586 (1998)CrossRef
42.6
Zurück zum Zitat W. Kuenel, S. Sherman: A surface micromachined silicon accelerometer with on-chip detection circuitry, Sens. Actuators Phys. 45(1), 7–16 (1994)CrossRef W. Kuenel, S. Sherman: A surface micromachined silicon accelerometer with on-chip detection circuitry, Sens. Actuators Phys. 45(1), 7–16 (1994)CrossRef
42.7
Zurück zum Zitat M. Schirmer, R. Goggin, P. Fitzgerald, D. Rohan, J.-E. Wong: MEMS Switch Capping and Passivation Method. US Patent 8124436 (2012) M. Schirmer, R. Goggin, P. Fitzgerald, D. Rohan, J.-E. Wong: MEMS Switch Capping and Passivation Method. US Patent 8124436 (2012)
42.8
Zurück zum Zitat L.E. Felton, P.W. Farrell, J. Luo, D.J. Collins, J.R. Martin, W.A. Webster: MEMS Capping Method and Apparatus. US Patent 6893574 (2005) L.E. Felton, P.W. Farrell, J. Luo, D.J. Collins, J.R. Martin, W.A. Webster: MEMS Capping Method and Apparatus. US Patent 6893574 (2005)
42.9
Zurück zum Zitat J.R. Martin: Process for Wafer Level Treatment to Reduce Stiction and Passivate Micromachined Surfaces and Compounds Used Therefor. US Patent 6674140 (2004) J.R. Martin: Process for Wafer Level Treatment to Reduce Stiction and Passivate Micromachined Surfaces and Compounds Used Therefor. US Patent 6674140 (2004)
42.10
Zurück zum Zitat A. Solanki, K. Prasad, K. Nunan, R. Oreilly: Comparing process flow of monolithic CMOS-MEMS integration on SOI wafers with monolithic BiMOS-MEMS integration on Silicon wafers, iMEMS fabrication incorporating MEMS and electronics on a single chip. In: Proc. 53rd IEEE Int. Midwest Symp. Circuits Syst. (2010) doi:10.1109/MWSCAS.2010.5548876 CrossRef A. Solanki, K. Prasad, K. Nunan, R. Oreilly: Comparing process flow of monolithic CMOS-MEMS integration on SOI wafers with monolithic BiMOS-MEMS integration on Silicon wafers, iMEMS fabrication incorporating MEMS and electronics on a single chip. In: Proc. 53rd IEEE Int. Midwest Symp. Circuits Syst. (2010) doi:10.​1109/​MWSCAS.​2010.​5548876 CrossRef
42.11
Zurück zum Zitat S. Lewis, S. Alie, T. Brosnihan, C. Core, T. Core, R. Howe, J. Geen, D. Hollocher, M. Judy, J. Memishian, K. Nunan, R. Paine, S. Sherman, B. Tsang, B. Wachtman: Integrated sensor and electronics processing for >108 iMEMS inertial measurement unit components. In: Proc. IEEE Int. Electron Devices Meet (2003) doi:10.1109/IEDM.2003.1269435 CrossRef S. Lewis, S. Alie, T. Brosnihan, C. Core, T. Core, R. Howe, J. Geen, D. Hollocher, M. Judy, J. Memishian, K. Nunan, R. Paine, S. Sherman, B. Tsang, B. Wachtman: Integrated sensor and electronics processing for >108 iMEMS inertial measurement unit components. In: Proc. IEEE Int. Electron Devices Meet (2003) doi:10.​1109/​IEDM.​2003.​1269435 CrossRef
42.12
Zurück zum Zitat G.K. Fedder, J. Chae, K. Najafi, T. Denison, J. Kuang, S. Lewis: Monolithically integrated inertial sensors. In: CMOS-MEMS, ed. by O. Brand, G.K. Fedder (Wiley-VCH, Weinheim 2005) G.K. Fedder, J. Chae, K. Najafi, T. Denison, J. Kuang, S. Lewis: Monolithically integrated inertial sensors. In: CMOS-MEMS, ed. by O. Brand, G.K. Fedder (Wiley-VCH, Weinheim 2005)
42.13
Zurück zum Zitat D. Hollocher, X. Zhang, A. Sparks, S. Bart, W. Sawyer, P. Narayanasamy, C. Pipitone, J. Memishian, H. Samuels, S.-L. Ng, R. Mhatre, D. Whitley, F. Sammoura, M. Bhagavat, C. Tsau, K. Nunan, M. Judy, M. Farrington, K. Yang: A very low cost, 3-axis, MEMS accelerometer for consumer applications. In: Proc. IEEE Sens (2009) pp. 953–957 doi:10.1109/ICSENS.2009.5398189 CrossRef D. Hollocher, X. Zhang, A. Sparks, S. Bart, W. Sawyer, P. Narayanasamy, C. Pipitone, J. Memishian, H. Samuels, S.-L. Ng, R. Mhatre, D. Whitley, F. Sammoura, M. Bhagavat, C. Tsau, K. Nunan, M. Judy, M. Farrington, K. Yang: A very low cost, 3-axis, MEMS accelerometer for consumer applications. In: Proc. IEEE Sens (2009) pp. 953–957 doi:10.​1109/​ICSENS.​2009.​5398189 CrossRef
42.14
Zurück zum Zitat T.K. Nunan: Polysilicon Deposition and Anneal Process Enabling Thick Polysilcon Films for MEMS Applications. US Patent 7754617 (2008) T.K. Nunan: Polysilicon Deposition and Anneal Process Enabling Thick Polysilcon Films for MEMS Applications. US Patent 7754617 (2008)
42.15
Zurück zum Zitat S. Sood: CMOS Compatible Hermetic Wafer Level Packaging for Inertial MEMS (SUSS MicroTech Inc, Sunnyvale 2013) S. Sood: CMOS Compatible Hermetic Wafer Level Packaging for Inertial MEMS (SUSS MicroTech Inc, Sunnyvale 2013)
42.20
Zurück zum Zitat D.M. Anderson: Design for Manufacturability (CRC Press, Boca Raton 2014) D.M. Anderson: Design for Manufacturability (CRC Press, Boca Raton 2014)
42.21
Zurück zum Zitat M.G. da Silva, R. Giasolli, S. Cunningham, D. DeRoo: MEMS design for manufacturability. In: Sensors Expo, Boston (2002) M.G. da Silva, R. Giasolli, S. Cunningham, D. DeRoo: MEMS design for manufacturability. In: Sensors Expo, Boston (2002)
42.23
Zurück zum Zitat A.L. Hartzell, M.G. da Silva, H. Shea: MEMS Reliability (Springer, New York 2011)CrossRef A.L. Hartzell, M.G. da Silva, H. Shea: MEMS Reliability (Springer, New York 2011)CrossRef
42.24
Zurück zum Zitat G. Schropfer, M. McNie, M.G. da Silva, R. Davies, A. Rickard, F.X. Musalem: Designing manufacturable MEMS in CMOS compatible processes – Methodology and case studies, Proc. SPIE (2004) doi:10.1117/12.544971 G. Schropfer, M. McNie, M.G. da Silva, R. Davies, A. Rickard, F.X. Musalem: Designing manufacturable MEMS in CMOS compatible processes – Methodology and case studies, Proc. SPIE (2004) doi:10.​1117/​12.​544971
42.25
Zurück zum Zitat B. Romanowicz, M.H. Zaman, S.F. Bart, V.L. Rabinovich, I. Tchertkov, C. Hsu, J.R. Gilbert: A methodology and associated CAD tools for Support of concurrent design of MEMS. In: VLSI: Systems on a Chip, ed. by L.M. Silveira, S. Devadas, R.A. Reis (Springer, New York 2000) B. Romanowicz, M.H. Zaman, S.F. Bart, V.L. Rabinovich, I. Tchertkov, C. Hsu, J.R. Gilbert: A methodology and associated CAD tools for Support of concurrent design of MEMS. In: VLSI: Systems on a Chip, ed. by L.M. Silveira, S. Devadas, R.A. Reis (Springer, New York 2000)
42.26
Zurück zum Zitat S. Maity, S. Liu, S. Rouvillois, G. Lorenz, M. Kamon: Rapidly analyzing parametric resonance and manufacturing yield of MEMS 2D scanning mirrors using hybrid finite-element/behavioral modeling, Proc. SPIE (2014) doi:10.1117/12.2041067 S. Maity, S. Liu, S. Rouvillois, G. Lorenz, M. Kamon: Rapidly analyzing parametric resonance and manufacturing yield of MEMS 2D scanning mirrors using hybrid finite-element/behavioral modeling, Proc. SPIE (2014) doi:10.​1117/​12.​2041067
42.30
Zurück zum Zitat M.J. Madou: Fundamentals of Microfabrication (CRC Press, Boca Raton 2000) M.J. Madou: Fundamentals of Microfabrication (CRC Press, Boca Raton 2000)
42.31
Zurück zum Zitat T. Rogers, N. Aitken, K. Stribley, J. Boyd: Improvements in MEMS gyroscope production as a result of using in situ, aligned, current-limited anodic bonding, Sens. Actuators A 123/124, 106–110 (2005)CrossRef T. Rogers, N. Aitken, K. Stribley, J. Boyd: Improvements in MEMS gyroscope production as a result of using in situ, aligned, current-limited anodic bonding, Sens. Actuators A 123/124, 106–110 (2005)CrossRef
42.33
Zurück zum Zitat R. Maboudian, R.T. Howe: Critical review: Adhesion in surface micromechanical structures, J. Vac. Sci. Technol. B 15, 1 (1997)CrossRef R. Maboudian, R.T. Howe: Critical review: Adhesion in surface micromechanical structures, J. Vac. Sci. Technol. B 15, 1 (1997)CrossRef
42.34
Zurück zum Zitat C.H. Mastrangelo: Surface force induced failures in microelectromechanical systems. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer Academic, Dordrecht 1998) pp. 367–395CrossRef C.H. Mastrangelo: Surface force induced failures in microelectromechanical systems. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer Academic, Dordrecht 1998) pp. 367–395CrossRef
42.35
Zurück zum Zitat R. Maboudian, R.T. Howe: Stiction reduction processes for surface micromachines, Tribology Lett 3(3), 215–221 (1997)CrossRef R. Maboudian, R.T. Howe: Stiction reduction processes for surface micromachines, Tribology Lett 3(3), 215–221 (1997)CrossRef
42.36
Zurück zum Zitat C.H. Mastrangelo, C.H. Hsu: Mechanical stability and adhesion of microstructures under capillary forces: Part I. Basic theory, J. Microelectromech. Syst. 2(1), 33–43 (1993)CrossRef C.H. Mastrangelo, C.H. Hsu: Mechanical stability and adhesion of microstructures under capillary forces: Part I. Basic theory, J. Microelectromech. Syst. 2(1), 33–43 (1993)CrossRef
42.37
Zurück zum Zitat C.H. Mastrangelo, C.H. Hsu: Mechanical stability and adhesion of microstructures under capillary forces: Part II. Experiments, J. Microelectromech. Syst. 2(1), 44–55 (1993)CrossRef C.H. Mastrangelo, C.H. Hsu: Mechanical stability and adhesion of microstructures under capillary forces: Part II. Experiments, J. Microelectromech. Syst. 2(1), 44–55 (1993)CrossRef
42.38
Zurück zum Zitat W.M. van Spengen, R. Puers, I. De Wolf: A physical model to predict stiction in MEMS, J. Micromech. Microeng. 12, 702–713 (2002)CrossRef W.M. van Spengen, R. Puers, I. De Wolf: A physical model to predict stiction in MEMS, J. Micromech. Microeng. 12, 702–713 (2002)CrossRef
42.39
42.41
Zurück zum Zitat A. Technology Corporation: Fluidic Self-Assemby White Paper (Allen Technology Corporation, Addison 1999) A. Technology Corporation: Fluidic Self-Assemby White Paper (Allen Technology Corporation, Addison 1999)
42.42
Zurück zum Zitat T. Fukushima, H. Hashiguchi, J. Bea, Y. Ohara, M. Murugesan, K.-W. Lee, T. Tanaka, M. Koyanagi: New chip-to-wafer 3D integration technology using hybrid self-assembly and electrostatic temporary bonding. In: Proc. IEEE Int. Electron Dev. Meet. (IEDM) (2012) doi:10.1109/IEDM.2012.6479157 CrossRef T. Fukushima, H. Hashiguchi, J. Bea, Y. Ohara, M. Murugesan, K.-W. Lee, T. Tanaka, M. Koyanagi: New chip-to-wafer 3D integration technology using hybrid self-assembly and electrostatic temporary bonding. In: Proc. IEEE Int. Electron Dev. Meet. (IEDM) (2012) doi:10.​1109/​IEDM.​2012.​6479157 CrossRef
Metadaten
Titel
High Volume Manufacturing and Field Stability of MEMS Products
verfasst von
T. Kieran Nunan
Mark G. da Silva
Copyright-Jahr
2017
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-54357-3_42

Neuer Inhalt