Skip to main content
Erschienen in: Topics in Catalysis 4-6/2015

01.04.2015 | Original Paper

Higher Chemical Stability of α-Li3N than β-Li3N in Atmosphere

verfasst von: Junqing Zhang, Yun Hang Hu

Erschienen in: Topics in Catalysis | Ausgabe 4-6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lithium nitride (Li3N), which generally consists of α-Li3N and β-Li3N, is a promising material for catalysis and energy applications. It is generally recognized that Li3N can be easily oxidized by air at room temperature. However, herein, it was found that O2 can not oxidize Li3N even at 170 °C. In contrast, H2O in atmosphere can cause the degradation of Li3N due to its reaction with H2O to LiOH, followed by further reaction with CO2 to Li2CO3 at room temperature. Furthermore, it was revealed that H2O reacted with β-Li3N much faster than α-Li3N, indicating that α-Li3N is more stable than β-Li3N in atmosphere.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat vonderGonna J, Meurer HJ, Nover G, Peun T, Schonbohm D, Will G (1998) In-situ investigations of the reversible hBN-cBN-hBN-transformation in the Li3N-BN catalyst system using synchrotron radiation. Mater Lett 33(5-6):321–326CrossRef vonderGonna J, Meurer HJ, Nover G, Peun T, Schonbohm D, Will G (1998) In-situ investigations of the reversible hBN-cBN-hBN-transformation in the Li3N-BN catalyst system using synchrotron radiation. Mater Lett 33(5-6):321–326CrossRef
2.
Zurück zum Zitat Hu YH, Huo Y (2011) Fast and exothermic reaction of CO2 and Li3N into C-N-containing solid Materials. J Phys Chem A 115(42):11678–11681CrossRef Hu YH, Huo Y (2011) Fast and exothermic reaction of CO2 and Li3N into C-N-containing solid Materials. J Phys Chem A 115(42):11678–11681CrossRef
3.
Zurück zum Zitat Gregory DH (2008) Lithium nitrides as sustainable energy materials. Chem Rec 8(4):229–239CrossRef Gregory DH (2008) Lithium nitrides as sustainable energy materials. Chem Rec 8(4):229–239CrossRef
4.
Zurück zum Zitat Gregory DH (2008) Lithium nitrides, imides and amides as lightweight, reversible hydrogen stores. J Mater Chem 18(20):2321–2330CrossRef Gregory DH (2008) Lithium nitrides, imides and amides as lightweight, reversible hydrogen stores. J Mater Chem 18(20):2321–2330CrossRef
5.
Zurück zum Zitat Markmaitree T, Ren R, Shaw LL (2006) Enhancement of lithium amide to lithium imide transition via mechanical activation. J Phys Chem B 110(41):20710–20718CrossRef Markmaitree T, Ren R, Shaw LL (2006) Enhancement of lithium amide to lithium imide transition via mechanical activation. J Phys Chem B 110(41):20710–20718CrossRef
6.
Zurück zum Zitat Nakamori Y, Orimo S (2004) Li–N based hydrogen storage materials. Mater Sci Eng B 108(1–2):48–50CrossRef Nakamori Y, Orimo S (2004) Li–N based hydrogen storage materials. Mater Sci Eng B 108(1–2):48–50CrossRef
7.
Zurück zum Zitat Nakamori Y, Yamagishi T, Yokoyama M, S-i Orimo (2004) Synthesis of LiNH2 films by vacuum evaporation. J Alloys Compd 377(1–2):L1–L3CrossRef Nakamori Y, Yamagishi T, Yokoyama M, S-i Orimo (2004) Synthesis of LiNH2 films by vacuum evaporation. J Alloys Compd 377(1–2):L1–L3CrossRef
8.
Zurück zum Zitat Ichikawa T, Isobe S, Hanada N, Fujii H (2004) Lithium nitride for reversible hydrogen storage. J Alloys Compd 365(1–2):271–276CrossRef Ichikawa T, Isobe S, Hanada N, Fujii H (2004) Lithium nitride for reversible hydrogen storage. J Alloys Compd 365(1–2):271–276CrossRef
9.
Zurück zum Zitat Ichikawa T, Hanada N, Isobe S, Leng HY, Fujii H (2005) Hydrogen storage properties in Ti catalyzed Li–N–H system. J Alloys Compd 404–406:435–438CrossRef Ichikawa T, Hanada N, Isobe S, Leng HY, Fujii H (2005) Hydrogen storage properties in Ti catalyzed Li–N–H system. J Alloys Compd 404–406:435–438CrossRef
10.
Zurück zum Zitat Ichikawa T, Hanada N, Isobe S, Leng H, Fujii H (2004) Mechanism of novel reaction from LiNH2 and LiH to Li2NH and H2 as a promising hydrogen storage system. J Phys Chem B 108(23):7887–7892CrossRef Ichikawa T, Hanada N, Isobe S, Leng H, Fujii H (2004) Mechanism of novel reaction from LiNH2 and LiH to Li2NH and H2 as a promising hydrogen storage system. J Phys Chem B 108(23):7887–7892CrossRef
11.
Zurück zum Zitat Hu YH, Ruckenstein E (2003) Ultrafast reaction between LiH and NH3 during H2 storage in Li3N. J Phys Chem A 107(46):9737–9739CrossRef Hu YH, Ruckenstein E (2003) Ultrafast reaction between LiH and NH3 during H2 storage in Li3N. J Phys Chem A 107(46):9737–9739CrossRef
12.
Zurück zum Zitat Hu YH, Ruckenstein E (2004) Highly effective Li2O/Li3N with ultrafast kinetics for H2 storage. Ind Eng Chem Res 43(10):2464–2467CrossRef Hu YH, Ruckenstein E (2004) Highly effective Li2O/Li3N with ultrafast kinetics for H2 storage. Ind Eng Chem Res 43(10):2464–2467CrossRef
13.
Zurück zum Zitat Hu YH, Yu NY, Ruckenstein E (2005) Hydrogen storage in Li3N: deactivation caused by a high dehydrogenation temperature. Ind Eng Chem Res 44(12):4304–4309CrossRef Hu YH, Yu NY, Ruckenstein E (2005) Hydrogen storage in Li3N: deactivation caused by a high dehydrogenation temperature. Ind Eng Chem Res 44(12):4304–4309CrossRef
14.
Zurück zum Zitat Hu YH, Yu NY, Ruckenstein E (2004) Effect of the heat pretreatment of Li3N on its H2 storage performance. Ind Eng Chem Res 43(15):4174–4177CrossRef Hu YH, Yu NY, Ruckenstein E (2004) Effect of the heat pretreatment of Li3N on its H2 storage performance. Ind Eng Chem Res 43(15):4174–4177CrossRef
15.
Zurück zum Zitat Hu YH, Ruckenstein E (2005) High reversible hydrogen capacity of LiNH2/Li3N mixtures. Ind Eng Chem Res 44(5):1510–1513CrossRef Hu YH, Ruckenstein E (2005) High reversible hydrogen capacity of LiNH2/Li3N mixtures. Ind Eng Chem Res 44(5):1510–1513CrossRef
16.
Zurück zum Zitat Hu YH, Ruckenstein E (2006) Ultrafast reaction between Li3N and LiNH2 to prepare the effective hydrogen storage material Li2NH. Ind Eng Chem Res 45(14):4993–4998CrossRef Hu YH, Ruckenstein E (2006) Ultrafast reaction between Li3N and LiNH2 to prepare the effective hydrogen storage material Li2NH. Ind Eng Chem Res 45(14):4993–4998CrossRef
17.
Zurück zum Zitat Hu YH, Ruckenstein E (2006) Hydrogen storage of Li2NH prepared by reacting Li with NH3. Ind Eng Chem Res 45(1):182–186CrossRef Hu YH, Ruckenstein E (2006) Hydrogen storage of Li2NH prepared by reacting Li with NH3. Ind Eng Chem Res 45(1):182–186CrossRef
18.
Zurück zum Zitat Yao JH, Shang C, Aguey-Zinsou KF, Guo ZX (2007) Desorption characteristics of mechanically and chemically modified LiNH2 and (LiNH2 + LiH). J Alloys Compd 432(1–2):277–282CrossRef Yao JH, Shang C, Aguey-Zinsou KF, Guo ZX (2007) Desorption characteristics of mechanically and chemically modified LiNH2 and (LiNH2 + LiH). J Alloys Compd 432(1–2):277–282CrossRef
19.
Zurück zum Zitat Chen P, Xiong Z, Luo J, Lin J, Tan KL (2002) Interaction of hydrogen with metal nitrides and imides. Nature 420(6913):302–304CrossRef Chen P, Xiong Z, Luo J, Lin J, Tan KL (2002) Interaction of hydrogen with metal nitrides and imides. Nature 420(6913):302–304CrossRef
20.
Zurück zum Zitat Kojima Y, Kawai Y (2004) Hydrogen storage of metal nitride by a mechanochemical reaction. Chem Commun 0(19):2210–2211CrossRef Kojima Y, Kawai Y (2004) Hydrogen storage of metal nitride by a mechanochemical reaction. Chem Commun 0(19):2210–2211CrossRef
21.
Zurück zum Zitat Dolotko O, Zhang H, Ugurlu O, Wiench JW, Pruski M, Scott Chumbley L, Pecharsky V (2007) Mechanochemical transformations in Li(Na)AlH4–Li(Na)NH2 systems. Acta Mater 55(9):3121–3130CrossRef Dolotko O, Zhang H, Ugurlu O, Wiench JW, Pruski M, Scott Chumbley L, Pecharsky V (2007) Mechanochemical transformations in Li(Na)AlH4–Li(Na)NH2 systems. Acta Mater 55(9):3121–3130CrossRef
22.
Zurück zum Zitat Lapp T, Skaarup S, Hooper A (1983) Ionic conductivity of pure and doped Li3N. Solid State Ion 11(2):97–103CrossRef Lapp T, Skaarup S, Hooper A (1983) Ionic conductivity of pure and doped Li3N. Solid State Ion 11(2):97–103CrossRef
23.
Zurück zum Zitat Brendecke H, Wagner E (1977) Electronic properties of superionic conductor Li3N. J Electrochem Soc 124(8):C305–C305 Brendecke H, Wagner E (1977) Electronic properties of superionic conductor Li3N. J Electrochem Soc 124(8):C305–C305
24.
Zurück zum Zitat Wahl J, Holland U (1978) Local ionic motion in the superionic conductor Li3N. Solid State Commun 27(3):237–241CrossRef Wahl J, Holland U (1978) Local ionic motion in the superionic conductor Li3N. Solid State Commun 27(3):237–241CrossRef
25.
Zurück zum Zitat Boukamp BA, Huggins RA (1976) Lithium ion conductivity in lithium nitride. Phys Lett A 58(4):231–233CrossRef Boukamp BA, Huggins RA (1976) Lithium ion conductivity in lithium nitride. Phys Lett A 58(4):231–233CrossRef
26.
Zurück zum Zitat Alpen UV, Rabenau A, Talat GH (1977) Ionic conductivity in Li3N single crystals. Appl Phys Lett 30(12):621–623CrossRef Alpen UV, Rabenau A, Talat GH (1977) Ionic conductivity in Li3N single crystals. Appl Phys Lett 30(12):621–623CrossRef
27.
Zurück zum Zitat Brese NE, Okeeffe M (1992) Crystal chemistry of inorganic nitrides. Struct Bond 79:307–378CrossRef Brese NE, Okeeffe M (1992) Crystal chemistry of inorganic nitrides. Struct Bond 79:307–378CrossRef
28.
Zurück zum Zitat Zintl E, Brauer G (1935) Constitution of lithium nitride. Z Elektrochem 41:102–107 Zintl E, Brauer G (1935) Constitution of lithium nitride. Z Elektrochem 41:102–107
29.
Zurück zum Zitat Rabenau A, Schulz H (1976) Re-evaluation of the lithium nitride structure. J Less Common Met 50(1):155–159CrossRef Rabenau A, Schulz H (1976) Re-evaluation of the lithium nitride structure. J Less Common Met 50(1):155–159CrossRef
30.
Zurück zum Zitat Schulz H, Thiemann KH (1979) Defect structure of the ionic conductor lithium nitride (Li3N). Acta Crystallogr Sect A 35:309–314CrossRef Schulz H, Thiemann KH (1979) Defect structure of the ionic conductor lithium nitride (Li3N). Acta Crystallogr Sect A 35:309–314CrossRef
31.
Zurück zum Zitat Mali M, Roos J, Brinkmann D (1987) Nuclear-magnetic-resonance evidence for a new phase induced by pressure in the superionic conductor Li3N. Phys Rev B 36(7):3888–3890CrossRef Mali M, Roos J, Brinkmann D (1987) Nuclear-magnetic-resonance evidence for a new phase induced by pressure in the superionic conductor Li3N. Phys Rev B 36(7):3888–3890CrossRef
32.
Zurück zum Zitat Schon JC, Wevers MAC, Jansen M (2001) Prediction of high pressure phases in the systems Li3N, Na3N, (Li, Na)3N, Li2S and Na2S. J Mater Chem 11(1):69–77CrossRef Schon JC, Wevers MAC, Jansen M (2001) Prediction of high pressure phases in the systems Li3N, Na3N, (Li, Na)3N, Li2S and Na2S. J Mater Chem 11(1):69–77CrossRef
33.
Zurück zum Zitat Beister HJ, Haag S, Kniep R, Strössner K, Syassen K (1988) Phase transformations of lithium nitride under pressure. Angew Chem Int Ed 27(8):1101–1103CrossRef Beister HJ, Haag S, Kniep R, Strössner K, Syassen K (1988) Phase transformations of lithium nitride under pressure. Angew Chem Int Ed 27(8):1101–1103CrossRef
34.
Zurück zum Zitat Huo Y, Hu YH (2012) UV–visible absorption spectrum determination of optical energy gaps of α and β lithium nitrides. J Phys Chem Solids 73(8):999–1002CrossRef Huo Y, Hu YH (2012) UV–visible absorption spectrum determination of optical energy gaps of α and β lithium nitrides. J Phys Chem Solids 73(8):999–1002CrossRef
35.
Zurück zum Zitat Ho AC, Granger MK, Ruoff AL, Van Camp PE, Van Doren VE (1999) Experimental and theoretical study of Li3N at high pressure. Phys Rev B 59(9):6083–6086CrossRef Ho AC, Granger MK, Ruoff AL, Van Camp PE, Van Doren VE (1999) Experimental and theoretical study of Li3N at high pressure. Phys Rev B 59(9):6083–6086CrossRef
36.
Zurück zum Zitat Lazicki A, Maddox B, Evans WJ, Yoo CS, McMahan AK, Pickett WE, Scalettar RT, Hu MY, Chow P (2005) New cubic phase of Li3N: stability of the N3− ion to 200 GPa. Phys Rev Lett 95(16):165503CrossRef Lazicki A, Maddox B, Evans WJ, Yoo CS, McMahan AK, Pickett WE, Scalettar RT, Hu MY, Chow P (2005) New cubic phase of Li3N: stability of the N3− ion to 200 GPa. Phys Rev Lett 95(16):165503CrossRef
37.
Zurück zum Zitat Brendecke H, Bludau W (1979) Optical absorption of lithium nitride. J Appl Phys 50(7):4743–4746CrossRef Brendecke H, Bludau W (1979) Optical absorption of lithium nitride. J Appl Phys 50(7):4743–4746CrossRef
38.
Zurück zum Zitat Brendecke H, Bludau W (1980) Photoluminescence properties of lithium nitride. Phys Rev B 21(2):805–815CrossRef Brendecke H, Bludau W (1980) Photoluminescence properties of lithium nitride. Phys Rev B 21(2):805–815CrossRef
39.
Zurück zum Zitat Kerker G (1981) Electronic structure of Li3N. Phys Rev B 23(12):6312–6318CrossRef Kerker G (1981) Electronic structure of Li3N. Phys Rev B 23(12):6312–6318CrossRef
40.
Zurück zum Zitat Dovesi R, Pisani C, Ricca F, Roetti C, Saunders VR (1984) Hartree–Fock study of crystalline lithium nitride. Phys Rev B 30(2):972–979CrossRef Dovesi R, Pisani C, Ricca F, Roetti C, Saunders VR (1984) Hartree–Fock study of crystalline lithium nitride. Phys Rev B 30(2):972–979CrossRef
41.
Zurück zum Zitat Lazicki A, Yoo CW, Evans WJ, Hu MY, Chow P, Pickett WE (2008) Pressure-induced loss of electronic interlayer state and metallization in the ionic solid Li3N: experiment and theory. Phys Rev B 78(15):155133CrossRef Lazicki A, Yoo CW, Evans WJ, Hu MY, Chow P, Pickett WE (2008) Pressure-induced loss of electronic interlayer state and metallization in the ionic solid Li3N: experiment and theory. Phys Rev B 78(15):155133CrossRef
42.
Zurück zum Zitat Fister TT, Seidler GT, Shirley EL, Vila FD, Rehr JJ, Nagle KP, Linehan JC, Cross JO (2008) The local electronic structure of α-Li3N. J Chem Phys 129(4):044702CrossRef Fister TT, Seidler GT, Shirley EL, Vila FD, Rehr JJ, Nagle KP, Linehan JC, Cross JO (2008) The local electronic structure of α-Li3N. J Chem Phys 129(4):044702CrossRef
43.
Zurück zum Zitat Wu SN, Dong ZL, Boey F, Wu P (2009) Electronic structure and vacancy formation of Li3N. Appl Phys Lett 94(17):172104CrossRef Wu SN, Dong ZL, Boey F, Wu P (2009) Electronic structure and vacancy formation of Li3N. Appl Phys Lett 94(17):172104CrossRef
44.
Zurück zum Zitat Cui S, Feng W, Hu H, Feng Z, Wang Y (2009) Structural transition of Li3N under high pressure: A first-principles study. Solid State Commun 149(15–16):612–615CrossRef Cui S, Feng W, Hu H, Feng Z, Wang Y (2009) Structural transition of Li3N under high pressure: A first-principles study. Solid State Commun 149(15–16):612–615CrossRef
45.
Zurück zum Zitat Li W, Chen JF, Wang T (2010) Electronic and elastic properties of Li3N under different pressure. Phys B 405(1):400–403CrossRef Li W, Chen JF, Wang T (2010) Electronic and elastic properties of Li3N under different pressure. Phys B 405(1):400–403CrossRef
46.
Zurück zum Zitat Cullity BD (1956) Elements of X-Ray diffraction, 3rd edn. Addison–Wesley publishing company Inc, Massachusetts Cullity BD (1956) Elements of X-Ray diffraction, 3rd edn. Addison–Wesley publishing company Inc, Massachusetts
47.
Zurück zum Zitat Chandrasekhar HR, Bhattacharya G, Migoni R, Bilz H (1977) Phonon spectra and lattice dynamics of lithium nitride. Solid State Commun 22(11):681–684CrossRef Chandrasekhar HR, Bhattacharya G, Migoni R, Bilz H (1977) Phonon spectra and lattice dynamics of lithium nitride. Solid State Commun 22(11):681–684CrossRef
48.
Zurück zum Zitat Chandrasekhar HR, Bhattacharya G, Migoni R, Bilz H (1978) Infrared and raman-spectra and lattice-dynamics of superionic conductor Li3N. Phys Rev B 17(2):884–893CrossRef Chandrasekhar HR, Bhattacharya G, Migoni R, Bilz H (1978) Infrared and raman-spectra and lattice-dynamics of superionic conductor Li3N. Phys Rev B 17(2):884–893CrossRef
49.
Zurück zum Zitat Brooker MH, Bates JB (1971) Raman and infrared spectral studies of anhydrous Li2CO3 and Na2CO3. J Chem Phys 54(11):4788–4796CrossRef Brooker MH, Bates JB (1971) Raman and infrared spectral studies of anhydrous Li2CO3 and Na2CO3. J Chem Phys 54(11):4788–4796CrossRef
50.
Zurück zum Zitat Pasierb P, Komornicki S, Rokita M, Rȩkas M (2001) Structural properties of Li2CO3–BaCO3 system derived from IR and Raman spectroscopy. J Mol Struct 596(1–3):151–156CrossRef Pasierb P, Komornicki S, Rokita M, Rȩkas M (2001) Structural properties of Li2CO3–BaCO3 system derived from IR and Raman spectroscopy. J Mol Struct 596(1–3):151–156CrossRef
51.
Zurück zum Zitat Jones LH (1954) The infrared spectra and structure of LiOH, LiOHH2O and the deuterium species. Remark on fundamental frequency of OH−. J Chem Phys 22(2):217–219CrossRef Jones LH (1954) The infrared spectra and structure of LiOH, LiOHH2O and the deuterium species. Remark on fundamental frequency of OH. J Chem Phys 22(2):217–219CrossRef
Metadaten
Titel
Higher Chemical Stability of α-Li3N than β-Li3N in Atmosphere
verfasst von
Junqing Zhang
Yun Hang Hu
Publikationsdatum
01.04.2015
Verlag
Springer US
Erschienen in
Topics in Catalysis / Ausgabe 4-6/2015
Print ISSN: 1022-5528
Elektronische ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-015-0379-8

Weitere Artikel der Ausgabe 4-6/2015

Topics in Catalysis 4-6/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.