Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2022 | OriginalPaper | Buchkapitel

Higher Order Embeddings for the Composition of the Harmonic Projection and Homotopy Operators

verfasst von: Shusen Ding, Guannan Shi, Donna Sylvester

Erschienen in: High-Dimensional Optimization and Probability

Verlag: Springer International Publishing

share
TEILEN

Abstract

In this chapter, the higher order embedding estimates for the composition of the homotopy and harmonic projection operators on differential forms are constructed, the higher regularity of this composition is discussed, and some applications of the main results are presented.
Literatur
1.
Zurück zum Zitat R.P. Agarwal, S. Ding, C. Nolder, Inequalities for Differential Forms (Springer Science Press, New York, 2009) CrossRef R.P. Agarwal, S. Ding, C. Nolder, Inequalities for Differential Forms (Springer Science Press, New York, 2009) CrossRef
2.
Zurück zum Zitat G. Bao, Y. Ling, Weighted integral inequalities of Poincaré type. Math. Ineq. Appl. 10, 251–259 (2007) MATH G. Bao, Y. Ling, Weighted integral inequalities of Poincaré type. Math. Ineq. Appl. 10, 251–259 (2007) MATH
3.
Zurück zum Zitat H. Bi, S. Ding, Some strong ( p, q)-type inequalities for the homotopy operator. Comput. Math. Appl. 62, 1780–1789 (2011) MathSciNetCrossRef H. Bi, S. Ding, Some strong ( p, q)-type inequalities for the homotopy operator. Comput. Math. Appl. 62, 1780–1789 (2011) MathSciNetCrossRef
4.
Zurück zum Zitat H. Cartan, Differential Forms (Dover Publications, New York, 2012) H. Cartan, Differential Forms (Dover Publications, New York, 2012)
5.
Zurück zum Zitat S. Ding, B. Liu, Dirac-harmonic equations for differential forms. Nonlinear Anal. Theor. 122, 43–57 (2015) MathSciNetCrossRef S. Ding, B. Liu, Dirac-harmonic equations for differential forms. Nonlinear Anal. Theor. 122, 43–57 (2015) MathSciNetCrossRef
6.
Zurück zum Zitat S. Ding, G. Shi, Y. Xing, Higher integrability of iterated operator on differentail forms. Nonlinear Anal. Theor. 145, 83–96 (2016) CrossRef S. Ding, G. Shi, Y. Xing, Higher integrability of iterated operator on differentail forms. Nonlinear Anal. Theor. 145, 83–96 (2016) CrossRef
8.
Zurück zum Zitat F.W. Gehring, The L p-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 79, 265–277 (1973) CrossRef F.W. Gehring, The L p-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 79, 265–277 (1973) CrossRef
9.
Zurück zum Zitat T. Iwaniec, A. Lutoborski, Integral estimates for null Lagrangians. Arch. Ration. Mech. Anal. 125, 25–79 (1993) MathSciNetCrossRef T. Iwaniec, A. Lutoborski, Integral estimates for null Lagrangians. Arch. Ration. Mech. Anal. 125, 25–79 (1993) MathSciNetCrossRef
10.
Zurück zum Zitat K. Kodaira, Harmonic fields in Riemannian manifolds (generalized potential theory). Ann. Math. 50, 587–665 (1949) MathSciNetCrossRef K. Kodaira, Harmonic fields in Riemannian manifolds (generalized potential theory). Ann. Math. 50, 587–665 (1949) MathSciNetCrossRef
11.
Zurück zum Zitat B. Liu, A r-weighted imbedding inequalities for A-harmonic tensors. J. Math. Anal. Appl. 273, 667–676 (2002) MathSciNetCrossRef B. Liu, A r-weighted imbedding inequalities for A-harmonic tensors. J. Math. Anal. Appl. 273, 667–676 (2002) MathSciNetCrossRef
12.
Zurück zum Zitat B.C. Morrey Jr., Multiple Integrals in the Calculus of Variations (Springer, Berlin, 2009) MATH B.C. Morrey Jr., Multiple Integrals in the Calculus of Variations (Springer, Berlin, 2009) MATH
13.
Zurück zum Zitat C. Nolder, Hardy-Littlewood theorems for A-harmonic tensors. Ill. J. Math., 43, 613–632 (1999) MathSciNetMATH C. Nolder, Hardy-Littlewood theorems for A-harmonic tensors. Ill. J. Math., 43, 613–632 (1999) MathSciNetMATH
14.
Zurück zum Zitat J.B. Perot, C.J. Zusi, Differential forms for scientists and engineers. J. Comput. Phys. 257, 1373–1393 (2014) MathSciNetCrossRef J.B. Perot, C.J. Zusi, Differential forms for scientists and engineers. J. Comput. Phys. 257, 1373–1393 (2014) MathSciNetCrossRef
15.
Zurück zum Zitat C. Scott, L p theory of differential forms on manifolds. Trans. Am. Math. Soc., 347, 2075–2096 (1995) MATH C. Scott, L p theory of differential forms on manifolds. Trans. Am. Math. Soc., 347, 2075–2096 (1995) MATH
16.
Zurück zum Zitat S.G. Staples, L p-averaging domains and the Poincaré inequality. Ann. Acad. Sci. Fenn. Ser. A. I. Math. 14, 103–127 (1989) MathSciNetCrossRef S.G. Staples, L p-averaging domains and the Poincaré inequality. Ann. Acad. Sci. Fenn. Ser. A. I. Math. 14, 103–127 (1989) MathSciNetCrossRef
17.
Zurück zum Zitat E.M. Stein, Singular Integrals and Differentiability Properties of Functions (PMS-30) (Princeton University Press, New York, 2016) E.M. Stein, Singular Integrals and Differentiability Properties of Functions (PMS-30) (Princeton University Press, New York, 2016)
18.
Zurück zum Zitat E.W. Stredulinsky, Higher integrability from reverse Hölder inequalities. Indiana Univ. Math. J. 29, 407–413 (1980) MathSciNetCrossRef E.W. Stredulinsky, Higher integrability from reverse Hölder inequalities. Indiana Univ. Math. J. 29, 407–413 (1980) MathSciNetCrossRef
19.
Zurück zum Zitat E. Suhubi, Exterior Analysis: Using Applications of Differential Forms (Elsevier, MA, 2013) MATH E. Suhubi, Exterior Analysis: Using Applications of Differential Forms (Elsevier, MA, 2013) MATH
20.
Zurück zum Zitat F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups (Springer, Berlin, 2013) MATH F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups (Springer, Berlin, 2013) MATH
Metadaten
Titel
Higher Order Embeddings for the Composition of the Harmonic Projection and Homotopy Operators
verfasst von
Shusen Ding
Guannan Shi
Donna Sylvester
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-031-00832-0_4

Stellenausschreibungen

Anzeige

Premium Partner