Skip to main content

2019 | OriginalPaper | Buchkapitel

16. Higher Order Thermo-mechanical Gradient Plasticity Model: Nonproportional Loading with Energetic and Dissipative Components

verfasst von : George Z. Voyiadjis, Yooseob Song

Erschienen in: Handbook of Nonlocal Continuum Mechanics for Materials and Structures

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, two cases of thermodynamic-based higher order gradient plasticity theories are presented and applied to the stretch-surface passivation problem for investigating the material behavior under the nonproportional loading condition. This chapter incorporates the thermal and mechanical responses of microsystems. It addresses phenomena such as size and boundary effects and in particular microscale heat transfer in fast-transient processes. The stored energy of cold work is considered in the development of the recoverable counterpart of the free energy. The main distinction between the two cases is the presence of the dissipative higher order microstress quantities \( {\mathcal{S}}_{ijk}^{\mathrm{dis}} \). Fleck et al. (Soc. A-Math. Phys. 470:2170, 2014, ASME 82:7, 2015) noted that \( {\mathcal{S}}_{ijk}^{\mathrm{dis}} \) always gives rise to the stress jump phenomenon, which causes a controversial dispute in the field of strain gradient plasticity theory with respect to whether it is physically acceptable or not, under the nonproportional loading condition. The finite element solution for the stretch-surface passivation problem is also presented by using the commercial finite element package ABAQUS/standard (User’s Manual (Version 6.12). Dassault Systemes Simulia Corp., Providence, 2012) via the user-subroutine UEL. The model is validated by comparing with three sets of small-scale experiments. The numerical simulation part, which is largely composed of four subparts, is followed. In the first part, the occurrence of the stress jump phenomenon under the stretch-surface passivation condition is introduced in conjunction with the aforementioned three experiments. The second part is carried out in order to clearly show the results to be contrary to each other from the two classes of strain gradient plasticity models. An extensive parametric study is presented in the third part in terms of the effects of the various material parameters on the stress-strain response for the two cases of strain gradient plasticity models, respectively. The evolution of the free energy and dissipation potentials are also investigated at elevated temperatures. In the last part, the two-dimensional simulation is given to examine the gradient and grain boundary effect, the mesh sensitivity of the two-dimensional model, and the stress jump phenomenon. Finally, some significant conclusions are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abaqus, User’s Manual (Version 6.12) (Dassault Systemes Simulia Corp., Providence, 2012) Abaqus, User’s Manual (Version 6.12) (Dassault Systemes Simulia Corp., Providence, 2012)
Zurück zum Zitat N.A. Fleck, J.W. Hutchinson, J. Mech. Phys. Solids 49, 10 (2001) N.A. Fleck, J.W. Hutchinson, J. Mech. Phys. Solids 49, 10 (2001)
Zurück zum Zitat N.A. Fleck, J.R. Willis, J. Mech. Phys. Solids 57, 7 (2009b) N.A. Fleck, J.R. Willis, J. Mech. Phys. Solids 57, 7 (2009b)
Zurück zum Zitat N.A. Fleck, J.W. Hutchinson, J.R. Willis, P. Roy, Soc. A Math. Phys. 470, 2170 (2014) N.A. Fleck, J.W. Hutchinson, J.R. Willis, P. Roy, Soc. A Math. Phys. 470, 2170 (2014)
Zurück zum Zitat N.A. Fleck, J.W. Hutchinson, J.R. Willis, J. Appl. Mech-T. ASME 82, 7 (2015)CrossRef N.A. Fleck, J.W. Hutchinson, J.R. Willis, J. Appl. Mech-T. ASME 82, 7 (2015)CrossRef
Zurück zum Zitat P. Fredriksson, P. Gudmundson, Mat. Sci. Eng. A Struct. 400 (2005) P. Fredriksson, P. Gudmundson, Mat. Sci. Eng. A Struct. 400 (2005)
Zurück zum Zitat M.E. Gurtin, J. Mech. Phys. Solids 56, 2 (2008) M.E. Gurtin, J. Mech. Phys. Solids 56, 2 (2008)
Zurück zum Zitat M.E. Gurtin, L. Anand, J. Mech. Phys. Solids 53, 7 (2005) M.E. Gurtin, L. Anand, J. Mech. Phys. Solids 53, 7 (2005)
Zurück zum Zitat S. Han, T. Kim, H. Lee, H. Lee, Electronics System-Integration Technology Conference, 2008. ESTC 2008, 2nd (2008) S. Han, T. Kim, H. Lee, H. Lee, Electronics System-Integration Technology Conference, 2008. ESTC 2008, 2nd (2008)
Zurück zum Zitat D.B. Liu, Y.M. He, L. Shen, J. Lei, S. Guo, K. Peng, Mat. Sci. Eng. A-Struct. 647 (2015) D.B. Liu, Y.M. He, L. Shen, J. Lei, S. Guo, K. Peng, Mat. Sci. Eng. A-Struct. 647 (2015)
Zurück zum Zitat M.A. Meyers, K.K. Chawla, Mechanical Behavior of Materials (Cambridge University Press, 2009), Cambridge, United Kingdom M.A. Meyers, K.K. Chawla, Mechanical Behavior of Materials (Cambridge University Press, 2009), Cambridge, United Kingdom
Zurück zum Zitat F. Mollica, K.R. Rajagopal, A.R. Srinivasa, Int. J. Plast. 17, 8 (2001)CrossRef F. Mollica, K.R. Rajagopal, A.R. Srinivasa, Int. J. Plast. 17, 8 (2001)CrossRef
Zurück zum Zitat L. Nicola, Y. Xiang, J.J. Vlassak, E. Van der Giessen, A. Needleman, J. Mech. Phys. Solids 54, 10 (2006)CrossRef L. Nicola, Y. Xiang, J.J. Vlassak, E. Van der Giessen, A. Needleman, J. Mech. Phys. Solids 54, 10 (2006)CrossRef
Zurück zum Zitat P. Rosakis, A.J. Rosakis, G. Ravichandran, J. Hodowany, J. Mech. Phys. Solids 48, 3 (2000)CrossRef P. Rosakis, A.J. Rosakis, G. Ravichandran, J. Hodowany, J. Mech. Phys. Solids 48, 3 (2000)CrossRef
Zurück zum Zitat S.S. Shishvan, L. Nicola, E. Van der Giessen, J. Appl. Phys. 107, 9 (2010)CrossRef S.S. Shishvan, L. Nicola, E. Van der Giessen, J. Appl. Phys. 107, 9 (2010)CrossRef
Zurück zum Zitat S.S. Shishvan, S. Mohammadi, M. Rahimian, E. Van der Giessen, Int. J. Solids Struct. 48, 2 (2011)CrossRef S.S. Shishvan, S. Mohammadi, M. Rahimian, E. Van der Giessen, Int. J. Solids Struct. 48, 2 (2011)CrossRef
Zurück zum Zitat G.Z. Voyiadjis, D. Faghihi, Int. J. Plast. 30–31 (2012) G.Z. Voyiadjis, D. Faghihi, Int. J. Plast. 30–31 (2012)
Zurück zum Zitat G.Z. Voyiadjis, D. Faghihi, Y.D. Zhang, Int. J. Solids Struct. 51, 10 (2014)CrossRef G.Z. Voyiadjis, D. Faghihi, Y.D. Zhang, Int. J. Solids Struct. 51, 10 (2014)CrossRef
Zurück zum Zitat G.Z. Voyiadjis, Y. Song, T. Park, J. Eng. Mater-T. ASME 139, 2 (2017) G.Z. Voyiadjis, Y. Song, T. Park, J. Eng. Mater-T. ASME 139, 2 (2017)
Zurück zum Zitat Y. Xiang, J.J. Vlassak, Acta Mater. 54, 20 (2006) Y. Xiang, J.J. Vlassak, Acta Mater. 54, 20 (2006)
Metadaten
Titel
Higher Order Thermo-mechanical Gradient Plasticity Model: Nonproportional Loading with Energetic and Dissipative Components
verfasst von
George Z. Voyiadjis
Yooseob Song
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-58729-5_14

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.