Skip to main content

2015 | OriginalPaper | Buchkapitel

12. Higher Resolution Scanning Probe Methods for Magnetic Imaging

verfasst von : S. N. Piramanayagam, Binni Varghese

Erschienen in: Surface Science Tools for Nanomaterials Characterization

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the emergence of nanotechnology, the feature size of devices is getting smaller and smaller and the demand for higher resolution imaging tools is growing. For the visualization of magnetic domains of nanostructures and thin films, magnetic force microscopy is the feasible and most utilized technique. The resolution of MFM is about 20–30 nm in the current instruments and efforts to improve the resolution in the sub-10 nm range are in progress. In this chapter, an overview of key research findings of several researchers and recent advances in the direction of improving the MFM resolution is provided.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lau JW, Shaw JM (2011) Magnetic nanostructures for advanced technologies: fabrication, metrology and challenges. J Phys D Appl Phys 44:303001CrossRef Lau JW, Shaw JM (2011) Magnetic nanostructures for advanced technologies: fabrication, metrology and challenges. J Phys D Appl Phys 44:303001CrossRef
2.
Zurück zum Zitat Foner S (1956) Vibrating sample magnetometer. Rev Sci Instrum 27(7):548–548CrossRef Foner S (1956) Vibrating sample magnetometer. Rev Sci Instrum 27(7):548–548CrossRef
3.
Zurück zum Zitat Flanders PJ (1990) A vertical force alternating‐gradient magnetometer. Rev Sci Instrum 61(2):839–847CrossRef Flanders PJ (1990) A vertical force alternating‐gradient magnetometer. Rev Sci Instrum 61(2):839–847CrossRef
4.
Zurück zum Zitat Xu XT, Moses AJ, Hall JP, Williams PI, Jenkins K (2011) A Comparison of magnetic domain images using a modified bitter pattern technique and the Kerr method on Grain-oriented electrical steel. IEEE Trans Magn 47(10):3531–3534CrossRef Xu XT, Moses AJ, Hall JP, Williams PI, Jenkins K (2011) A Comparison of magnetic domain images using a modified bitter pattern technique and the Kerr method on Grain-oriented electrical steel. IEEE Trans Magn 47(10):3531–3534CrossRef
5.
Zurück zum Zitat Barman A, Kimura T, Otani Y, Fukuma Y, Akahane K, Meguro S (2008) Benchtop time-resolved magneto-optical Kerr magnetometer. Rev Sci Instrum 79(12):123905CrossRef Barman A, Kimura T, Otani Y, Fukuma Y, Akahane K, Meguro S (2008) Benchtop time-resolved magneto-optical Kerr magnetometer. Rev Sci Instrum 79(12):123905CrossRef
6.
Zurück zum Zitat Budruk A, Phatak C, Petford-Long AK et al (2011) In situ Lorentz TEM magnetization studies on a Fe–Pd–Co martensitic alloy. Acta Materiialia 59(17):6646–6657CrossRef Budruk A, Phatak C, Petford-Long AK et al (2011) In situ Lorentz TEM magnetization studies on a Fe–Pd–Co martensitic alloy. Acta Materiialia 59(17):6646–6657CrossRef
7.
Zurück zum Zitat Hartmann U (1999) Magnetic force microscopy. Annu Rev Mater Sci 29:53–87CrossRef Hartmann U (1999) Magnetic force microscopy. Annu Rev Mater Sci 29:53–87CrossRef
8.
Zurück zum Zitat Schwartz A, Wiesendager R (2008) Magnetic sensitive force microscopy. Nano Today 3(1–2):28CrossRef Schwartz A, Wiesendager R (2008) Magnetic sensitive force microscopy. Nano Today 3(1–2):28CrossRef
9.
Zurück zum Zitat Martin Y, Wickramasinghe HK (1987) Magnetic imaging by “force microscopy” with 1000 Å resolution. Appl Phys Lett 50(20):1455CrossRef Martin Y, Wickramasinghe HK (1987) Magnetic imaging by “force microscopy” with 1000 Å resolution. Appl Phys Lett 50(20):1455CrossRef
10.
Zurück zum Zitat Chen YJ, Leong SH, Huang TL, Ng KW, Hu SB, Yuan ZM, Ng V (2008) A comparative study of write field distribution of trailing-edge shielded and unshielded perpendicular write heads by quantitative magnetic force microscopy. Appl Phys Lett 92:162505CrossRef Chen YJ, Leong SH, Huang TL, Ng KW, Hu SB, Yuan ZM, Ng V (2008) A comparative study of write field distribution of trailing-edge shielded and unshielded perpendicular write heads by quantitative magnetic force microscopy. Appl Phys Lett 92:162505CrossRef
11.
Zurück zum Zitat Lu W, Li Z, Hatakeyama K, Egawa G, Yoshimura S, Saito H (2010) High resolution magnetic imaging of perpendicular magnetic recording head using frequency-modulated magnetic force microscopy with a hard magnetic tip. Appl Phys Lett 96(14):143104CrossRef Lu W, Li Z, Hatakeyama K, Egawa G, Yoshimura S, Saito H (2010) High resolution magnetic imaging of perpendicular magnetic recording head using frequency-modulated magnetic force microscopy with a hard magnetic tip. Appl Phys Lett 96(14):143104CrossRef
12.
Zurück zum Zitat Groenland JPJ, van Engelen GJP, Bernards JPC, Cramer HAJ (1993) Investigating recording patterns using magnetic force microscopy. J Magn Magn Mater 120:327–329CrossRef Groenland JPJ, van Engelen GJP, Bernards JPC, Cramer HAJ (1993) Investigating recording patterns using magnetic force microscopy. J Magn Magn Mater 120:327–329CrossRef
13.
Zurück zum Zitat Glijer P, Sivertsen JM, Judy JH (1995) Magnetic force microscopy (MFM) studies of micromagnetic structures of high coercivity CoCrPt/Cr and CoCrPtB/Cr thin films. IEEE Trans Magn 31(6):2842CrossRef Glijer P, Sivertsen JM, Judy JH (1995) Magnetic force microscopy (MFM) studies of micromagnetic structures of high coercivity CoCrPt/Cr and CoCrPtB/Cr thin films. IEEE Trans Magn 31(6):2842CrossRef
14.
Zurück zum Zitat Madabhushi R, Gomez RD, Burke ER, Mayergoyz ID, Orloff J (1997) Inter-track interference studies using MFM image reconstruction. IEEE Trans Magn 33(5):4053CrossRef Madabhushi R, Gomez RD, Burke ER, Mayergoyz ID, Orloff J (1997) Inter-track interference studies using MFM image reconstruction. IEEE Trans Magn 33(5):4053CrossRef
15.
Zurück zum Zitat Takekuma I, Haseyama M, Sueoka K, Mukasa K, Yasui M (1999) A study of magnetization fluctuations in transition region using MFM image analysis. IEEE Trans Magn 35(5):2685CrossRef Takekuma I, Haseyama M, Sueoka K, Mukasa K, Yasui M (1999) A study of magnetization fluctuations in transition region using MFM image analysis. IEEE Trans Magn 35(5):2685CrossRef
16.
Zurück zum Zitat Moser A, Rubin KA, Best ME (2001) Transition position jitter in longitudinal magnetic recording media. IEEE Trans Magn 37(4):1872CrossRef Moser A, Rubin KA, Best ME (2001) Transition position jitter in longitudinal magnetic recording media. IEEE Trans Magn 37(4):1872CrossRef
17.
Zurück zum Zitat Abarra EN, Glijer P, Kisker H, Okamoto I, Suzuki T (1997) Thermal stability and micromagnetic properties of high-density CoCrPtTa longitudinal media. J Magn Magn Mater 175(1–2):148CrossRef Abarra EN, Glijer P, Kisker H, Okamoto I, Suzuki T (1997) Thermal stability and micromagnetic properties of high-density CoCrPtTa longitudinal media. J Magn Magn Mater 175(1–2):148CrossRef
18.
Zurück zum Zitat Murayama A, Hyomi K, Ohshima K, Miyamura M, Maekawa M, Kondoh S (1997) Grain structure and magnetic clustering in SiO2 added CoNiPt granular films. J Appl Phys 81(8):3925CrossRef Murayama A, Hyomi K, Ohshima K, Miyamura M, Maekawa M, Kondoh S (1997) Grain structure and magnetic clustering in SiO2 added CoNiPt granular films. J Appl Phys 81(8):3925CrossRef
19.
Zurück zum Zitat Chen J, Saito H, Ishio S, Kobayashi K (1998) Analysis of two-dimensional medium noise and magnetic cluster with MFM for Co82Cr13Ta5 longitudinal magnetic recording media. J Magn Magn Mater 188(1–2):260CrossRef Chen J, Saito H, Ishio S, Kobayashi K (1998) Analysis of two-dimensional medium noise and magnetic cluster with MFM for Co82Cr13Ta5 longitudinal magnetic recording media. J Magn Magn Mater 188(1–2):260CrossRef
20.
Zurück zum Zitat Zhu JG, Luo YS, Ding JR, Ye XG, Louis EA (1994) MFM study of edge overwrite in perpendicular thin film recording media. IEEE Trans Magn 30(5):2755CrossRef Zhu JG, Luo YS, Ding JR, Ye XG, Louis EA (1994) MFM study of edge overwrite in perpendicular thin film recording media. IEEE Trans Magn 30(5):2755CrossRef
21.
Zurück zum Zitat Suzuki T, Honda N, Ouchi K (1999) Fe-Pt media for perpendicular magnetic recording. IEEE Trans Magn 35(5):2748CrossRef Suzuki T, Honda N, Ouchi K (1999) Fe-Pt media for perpendicular magnetic recording. IEEE Trans Magn 35(5):2748CrossRef
22.
Zurück zum Zitat Mei L, Liu WH, Ho K, Lairson BM, Dunning FB (1998) Magnetic force microscopy of high-density perpendicular magnetic recording media. J Magn Magn Mater 187:268CrossRef Mei L, Liu WH, Ho K, Lairson BM, Dunning FB (1998) Magnetic force microscopy of high-density perpendicular magnetic recording media. J Magn Magn Mater 187:268CrossRef
23.
Zurück zum Zitat Takenoiri S, Sakai Y, Enomoto K, Watanabe S, Uwazumi H (2003) Magnetic properties, magnetic cluster size, and read-write performance of CoPtCr-SiO2 perpendicular recording media. IEEE Trans Magn 39:2279CrossRef Takenoiri S, Sakai Y, Enomoto K, Watanabe S, Uwazumi H (2003) Magnetic properties, magnetic cluster size, and read-write performance of CoPtCr-SiO2 perpendicular recording media. IEEE Trans Magn 39:2279CrossRef
24.
Zurück zum Zitat Varghese B, Piramanayagam SN, Lee WK, Tan HK (2014) Noise characterization of perpendicular recording media by cluster size measurements. IEEE Trans magn 50: 3201606 Varghese B, Piramanayagam SN, Lee WK, Tan HK (2014) Noise characterization of perpendicular recording media by cluster size measurements. IEEE Trans magn 50: 3201606
25.
Zurück zum Zitat Svedberg EB, Khizroev S, Litvinov D (2002) Magnetic force microscopy study of perpendicular media: signal-to-noise determination and transition noise analysis. J Appl Phys 91(8):5365CrossRef Svedberg EB, Khizroev S, Litvinov D (2002) Magnetic force microscopy study of perpendicular media: signal-to-noise determination and transition noise analysis. J Appl Phys 91(8):5365CrossRef
26.
Zurück zum Zitat Rettner CT, Best ME, Terris BD (2001) Patterning of granular magnetic media with a focused ion beam to produce single-domain islands at >140 Gbit/in2. IEEE Trans Magn 37(4):1649CrossRef Rettner CT, Best ME, Terris BD (2001) Patterning of granular magnetic media with a focused ion beam to produce single-domain islands at >140 Gbit/in2. IEEE Trans Magn 37(4):1649CrossRef
27.
Zurück zum Zitat Lohau J, Moser A, Rettner CT, Best ME, Terris BD (2001) Writing and reading perpendicular magnetic recording media patterned by a focused ion beam. Appl Phys Lett 78(7):990CrossRef Lohau J, Moser A, Rettner CT, Best ME, Terris BD (2001) Writing and reading perpendicular magnetic recording media patterned by a focused ion beam. Appl Phys Lett 78(7):990CrossRef
28.
Zurück zum Zitat Thomson T, Hu G, Terris BD (2006) Intrinsic distribution of magnetic anisotropy in thin films probed by patterned nanostructures. Phys Rev Lett 96:257204CrossRef Thomson T, Hu G, Terris BD (2006) Intrinsic distribution of magnetic anisotropy in thin films probed by patterned nanostructures. Phys Rev Lett 96:257204CrossRef
29.
Zurück zum Zitat Hu G, Thomson T, Albrecht M, Best ME, Terris BD, Rettner CT, Raoux S, McClelland GM, Hart MW (2004) Magnetic and recording properties of Co/Pd islands on prepatterned substrates. J Appl Phys 95(11):7013CrossRef Hu G, Thomson T, Albrecht M, Best ME, Terris BD, Rettner CT, Raoux S, McClelland GM, Hart MW (2004) Magnetic and recording properties of Co/Pd islands on prepatterned substrates. J Appl Phys 95(11):7013CrossRef
30.
Zurück zum Zitat Shaw JM, Russek SE, Thomson T, Donahue MJ, Terris BD, Hellwig O, Dobisz E, Schneider ML (2008) Reversal mechanisms in perpendicularly magnetized nanostructures. Phys Rev B 78:024414CrossRef Shaw JM, Russek SE, Thomson T, Donahue MJ, Terris BD, Hellwig O, Dobisz E, Schneider ML (2008) Reversal mechanisms in perpendicularly magnetized nanostructures. Phys Rev B 78:024414CrossRef
31.
Zurück zum Zitat Piramanayagam SN, Aung KO, Deng S, Sbiaa R (2009) Antiferromagnetically coupled patterned media. J Appl Phys 105:07C118CrossRef Piramanayagam SN, Aung KO, Deng S, Sbiaa R (2009) Antiferromagnetically coupled patterned media. J Appl Phys 105:07C118CrossRef
32.
Zurück zum Zitat Mojtaba R, Piramanayagam SN, Deng S, Aung KO, Sbiaa R, Kay YS, Wong SK, Chong TC (2010) Antiferromagnetically coupled patterned media and control of switching field distribution. IEEE Trans Magn 46(6):1787CrossRef Mojtaba R, Piramanayagam SN, Deng S, Aung KO, Sbiaa R, Kay YS, Wong SK, Chong TC (2010) Antiferromagnetically coupled patterned media and control of switching field distribution. IEEE Trans Magn 46(6):1787CrossRef
33.
Zurück zum Zitat Ranjbar M, Tavakkoli KGA, Piramanayagam SN, Tan KP, Sbiaa R, Wong SK, Chong TC (2011) Magnetostatic interaction effects in switching field distribution of conventional and staggered bit-patterned media. J Phys D Appl Phys 44:265005CrossRef Ranjbar M, Tavakkoli KGA, Piramanayagam SN, Tan KP, Sbiaa R, Wong SK, Chong TC (2011) Magnetostatic interaction effects in switching field distribution of conventional and staggered bit-patterned media. J Phys D Appl Phys 44:265005CrossRef
34.
Zurück zum Zitat Chen YJ, Ding J, Deng J, Huang T, Leong SH, Shi J, Zong B, Hnin YY, Chun KA, Hu S, Liu B (2010) Switching probability distribution of bit Islands in bit patterned media. IEEE Trans Magn 46(6):1990CrossRef Chen YJ, Ding J, Deng J, Huang T, Leong SH, Shi J, Zong B, Hnin YY, Chun KA, Hu S, Liu B (2010) Switching probability distribution of bit Islands in bit patterned media. IEEE Trans Magn 46(6):1990CrossRef
35.
Zurück zum Zitat Gaur N, Kundu S, Piramanayagam SN, Maurer SL, Tan HK, Wong SK, Steen SE, Yang H, Bhatia CS (2013) Lateral displacement induced disorder in L1 0 -FePt nanostructures by ion-implantation. Sci Rep 3:1907CrossRef Gaur N, Kundu S, Piramanayagam SN, Maurer SL, Tan HK, Wong SK, Steen SE, Yang H, Bhatia CS (2013) Lateral displacement induced disorder in L1 0 -FePt nanostructures by ion-implantation. Sci Rep 3:1907CrossRef
36.
Zurück zum Zitat Raabe J, Pulwey R, Sattler R, Schweinbock T, Zweck J, Weiss D (2000) Magnetization pattern of ferromagnetic nanodisks. J Appl Phys 88(7):4437CrossRef Raabe J, Pulwey R, Sattler R, Schweinbock T, Zweck J, Weiss D (2000) Magnetization pattern of ferromagnetic nanodisks. J Appl Phys 88(7):4437CrossRef
37.
Zurück zum Zitat Okuno T, Shigeto K, Ono T, Mibu K, Shinjo T (2002) MFM study of magnetic vortex cores in circular permalloy dots: behavior in external field. J Magn Magn Mater 240:1–6CrossRef Okuno T, Shigeto K, Ono T, Mibu K, Shinjo T (2002) MFM study of magnetic vortex cores in circular permalloy dots: behavior in external field. J Magn Magn Mater 240:1–6CrossRef
38.
Zurück zum Zitat Hehn M, Padovani S, Ounadjela K, Bucher JP (1996) Nanoscale magnetic domain structures in epitaxial cobalt films. Phys Rev B 54(5):3428CrossRef Hehn M, Padovani S, Ounadjela K, Bucher JP (1996) Nanoscale magnetic domain structures in epitaxial cobalt films. Phys Rev B 54(5):3428CrossRef
39.
Zurück zum Zitat Amos N, Fernandez R, Ikkawi R, Lee B, Lavrenov A, Krichevsky A, Litvinov D, Khizroev S (2008) Magnetic force microscopy study of magnetic stripe domains in sputter deposited permalloy thin films. J Appl Phys 103:07E732CrossRef Amos N, Fernandez R, Ikkawi R, Lee B, Lavrenov A, Krichevsky A, Litvinov D, Khizroev S (2008) Magnetic force microscopy study of magnetic stripe domains in sputter deposited permalloy thin films. J Appl Phys 103:07E732CrossRef
40.
Zurück zum Zitat Leva ES, Valente RC, Tabares FM, Mansilla MV, Roshdestwensky S, Butera A (2010) Magnetic domain crossover in FePt thin films. Phys Rev B 82:144410CrossRef Leva ES, Valente RC, Tabares FM, Mansilla MV, Roshdestwensky S, Butera A (2010) Magnetic domain crossover in FePt thin films. Phys Rev B 82:144410CrossRef
41.
Zurück zum Zitat Sbiaa R, Bilin Z, Ranjbar M, Tan HK, Wong SK, Piramanayagam SN, Chong TC (2010) Effect of magnetostatic energy on domain structure and magnetization reversal in (Co/Pd) multilayers. J Appl Phys 107:103901CrossRef Sbiaa R, Bilin Z, Ranjbar M, Tan HK, Wong SK, Piramanayagam SN, Chong TC (2010) Effect of magnetostatic energy on domain structure and magnetization reversal in (Co/Pd) multilayers. J Appl Phys 107:103901CrossRef
42.
Zurück zum Zitat Gaur N, Piramanayagam SN, Maurer SL, Nunes RW, Steen S, Yang H, Bhatia CS (2011) Ion implantation induced modification of structural and magnetic properties of perpendicular media. J Phys D Appl Phys 44:365001CrossRef Gaur N, Piramanayagam SN, Maurer SL, Nunes RW, Steen S, Yang H, Bhatia CS (2011) Ion implantation induced modification of structural and magnetic properties of perpendicular media. J Phys D Appl Phys 44:365001CrossRef
43.
Zurück zum Zitat Hellwing O, Berger A, Fullerton EE (2003) Domain walls in antiferromagnetically coupled multilayer films. Phys Rev Lett 91(19):197203CrossRef Hellwing O, Berger A, Fullerton EE (2003) Domain walls in antiferromagnetically coupled multilayer films. Phys Rev Lett 91(19):197203CrossRef
44.
Zurück zum Zitat Shaw JM, Olsen M, Lau JW, Schneider ML, Silva TJ, Hellwig O, Dobisz E, Terris BD (2010) Intrinsic defects in perpendicularly magnetized multilayer thin films and nanostructures. Phys Rev B 82:144437CrossRef Shaw JM, Olsen M, Lau JW, Schneider ML, Silva TJ, Hellwig O, Dobisz E, Terris BD (2010) Intrinsic defects in perpendicularly magnetized multilayer thin films and nanostructures. Phys Rev B 82:144437CrossRef
45.
Zurück zum Zitat Frandsen C, Stipp SLS, McEnroe SA, Madsen MB, Knudsen JM (2004) Magnetic domain structures and stray fields of individual elongated magnetite grains revealed by magnetic force microscopy (MFM). Phys Earth Planet In 141:121–129CrossRef Frandsen C, Stipp SLS, McEnroe SA, Madsen MB, Knudsen JM (2004) Magnetic domain structures and stray fields of individual elongated magnetite grains revealed by magnetic force microscopy (MFM). Phys Earth Planet In 141:121–129CrossRef
46.
Zurück zum Zitat Shaar R, Feinberg JM (2013) Rock magnetic properties of dendrites: insights from MFM imaging and implications for paleomagnetic studies. Geochem Geophys Geosyst 14:407CrossRef Shaar R, Feinberg JM (2013) Rock magnetic properties of dendrites: insights from MFM imaging and implications for paleomagnetic studies. Geochem Geophys Geosyst 14:407CrossRef
47.
Zurück zum Zitat Proksch RB, Schaffer TE, Moskowitz BM, Dahlberg ED, Bazylinski DA, Frankel RB (1995) Magnetic force microscopy of the submicron magnetic assembly in a magnetotactic bacterium. Appl Phys Lett 66(19):2582CrossRef Proksch RB, Schaffer TE, Moskowitz BM, Dahlberg ED, Bazylinski DA, Frankel RB (1995) Magnetic force microscopy of the submicron magnetic assembly in a magnetotactic bacterium. Appl Phys Lett 66(19):2582CrossRef
48.
Zurück zum Zitat Phillips GN, Siekman M, Abelmann L, Lodder JC (2002) High resolution magnetic force microscopy using focused ion beam modified tips. Appl Phys Lett 81:865CrossRef Phillips GN, Siekman M, Abelmann L, Lodder JC (2002) High resolution magnetic force microscopy using focused ion beam modified tips. Appl Phys Lett 81:865CrossRef
49.
Zurück zum Zitat Gao L, Yue LP, Yokota T, Skomski R, Liou SH, Takahoshi H, Saito H, Ishio S (2004) Focused ion beam milled CoPt magnetic force microscopy tips for high resolution domain images. IEEE Trans Magn 40:2194CrossRef Gao L, Yue LP, Yokota T, Skomski R, Liou SH, Takahoshi H, Saito H, Ishio S (2004) Focused ion beam milled CoPt magnetic force microscopy tips for high resolution domain images. IEEE Trans Magn 40:2194CrossRef
50.
Zurück zum Zitat Deng Z, Yenilmez E, Leu J, Hoffman JE, Straver EW, Dai H, Moler KA (2004) Metal-coated carbon nanotube tips for magnetic force microscopy. Appl Phys Lett 85:6263CrossRef Deng Z, Yenilmez E, Leu J, Hoffman JE, Straver EW, Dai H, Moler KA (2004) Metal-coated carbon nanotube tips for magnetic force microscopy. Appl Phys Lett 85:6263CrossRef
51.
Zurück zum Zitat Kuramochi H, Uzumaki T, Yasutake M, Tanaka A, Akinaga H, Yokoyama H et al (2005) A magnetic force microscope using CoFe-coated carbon nanotube probes. Nanotechnology 16:24CrossRef Kuramochi H, Uzumaki T, Yasutake M, Tanaka A, Akinaga H, Yokoyama H et al (2005) A magnetic force microscope using CoFe-coated carbon nanotube probes. Nanotechnology 16:24CrossRef
52.
Zurück zum Zitat Winkler A, M¨uhl T, Menzel S, Kozhuharova-Koseva R, Hampel S, Leonhardt A, B¨uchner B (2006) Magnetic force microscopy sensors using iron-filled carbon nanotubes. J Appl Phys 99:104905CrossRef Winkler A, M¨uhl T, Menzel S, Kozhuharova-Koseva R, Hampel S, Leonhardt A, B¨uchner B (2006) Magnetic force microscopy sensors using iron-filled carbon nanotubes. J Appl Phys 99:104905CrossRef
53.
Zurück zum Zitat Futamoto M et al (2013) Improvement of magnetic force microscope resolution and application to high-density recording media. IEEE Trans Magn 49(6):2748CrossRef Futamoto M et al (2013) Improvement of magnetic force microscope resolution and application to high-density recording media. IEEE Trans Magn 49(6):2748CrossRef
54.
Zurück zum Zitat Wu Y, Shen Y, Liu Z, Li K, Qiu J (2003) Point-dipole response from a magnetic force microscopy tip with a synthetic antiferromagnetic coating. Appl Phys Lett 82:1748–1751CrossRef Wu Y, Shen Y, Liu Z, Li K, Qiu J (2003) Point-dipole response from a magnetic force microscopy tip with a synthetic antiferromagnetic coating. Appl Phys Lett 82:1748–1751CrossRef
55.
Zurück zum Zitat Oti JO, Rice P, Russek SE (1994) Proposed antiferromagnetically coupled duallayer magnetic force microscope tips. J Appl Phys 75:6881CrossRef Oti JO, Rice P, Russek SE (1994) Proposed antiferromagnetically coupled duallayer magnetic force microscope tips. J Appl Phys 75:6881CrossRef
56.
Zurück zum Zitat Amos N, Ikkawi R, Haddon R, Litvinov D, Khizroev S (2008) Controlling multidomain states to enable sub-10-nm magnetic force microscopy. Appl Phys Lett 93:203116CrossRef Amos N, Ikkawi R, Haddon R, Litvinov D, Khizroev S (2008) Controlling multidomain states to enable sub-10-nm magnetic force microscopy. Appl Phys Lett 93:203116CrossRef
57.
Zurück zum Zitat Piramanayagam SN, Ranjbar M, Tan EL, Tan HK, Sbiaa R, Chong TC (2011) Enhanced resolution in magnetic force microscropy using tips with perpendicular magnetic anisotropy. J Appl Phys 109:07E326CrossRef Piramanayagam SN, Ranjbar M, Tan EL, Tan HK, Sbiaa R, Chong TC (2011) Enhanced resolution in magnetic force microscropy using tips with perpendicular magnetic anisotropy. J Appl Phys 109:07E326CrossRef
58.
Zurück zum Zitat Piramanayagam SN (2007) Perpendicular recording media for hard disk drives. J Appl Phys 102:011301CrossRef Piramanayagam SN (2007) Perpendicular recording media for hard disk drives. J Appl Phys 102:011301CrossRef
59.
Zurück zum Zitat Piramanayagam SN, Shi JZ, Zhao HB, Mah CS, Zhang J (2005) Stacked CoCrPt: SiO2 layers for perpendicular recording media. IEEE Trans Magn 41(10):3190–3192CrossRef Piramanayagam SN, Shi JZ, Zhao HB, Mah CS, Zhang J (2005) Stacked CoCrPt: SiO2 layers for perpendicular recording media. IEEE Trans Magn 41(10):3190–3192CrossRef
60.
Zurück zum Zitat Piramanayagam SN, Ranjbar M, Sbiaa R, Tavakkoli AKG, Chong TC (2012) Characterization of high-density bit-patterned media using ultra-high resolution magnetic force microscopy. Phys Status Solidi-Rapid Res Lett 6(3):141–143CrossRef Piramanayagam SN, Ranjbar M, Sbiaa R, Tavakkoli AKG, Chong TC (2012) Characterization of high-density bit-patterned media using ultra-high resolution magnetic force microscopy. Phys Status Solidi-Rapid Res Lett 6(3):141–143CrossRef
61.
Zurück zum Zitat Ranjbar M, Piramanayagam SN, Sbiaa R, Chong TC (2012) Advanced magnetic force microscopy for high resolution magnetic imaging. Nanosci Nanotechnol Lett 4(6):628–633CrossRef Ranjbar M, Piramanayagam SN, Sbiaa R, Chong TC (2012) Advanced magnetic force microscopy for high resolution magnetic imaging. Nanosci Nanotechnol Lett 4(6):628–633CrossRef
62.
Zurück zum Zitat Albrecht TR, Grutter P, Horne D, Rugar D (1991) Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69:668CrossRef Albrecht TR, Grutter P, Horne D, Rugar D (1991) Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69:668CrossRef
63.
Zurück zum Zitat Lim F, Wilson B, Wood R (2010) Analysis of shingle-write readback using magnetic-force microscopy. IEEE Trans Magn 46:1548CrossRef Lim F, Wilson B, Wood R (2010) Analysis of shingle-write readback using magnetic-force microscopy. IEEE Trans Magn 46:1548CrossRef
64.
Zurück zum Zitat Volodin A, Temst K, Van Haesendonck C, Bruynseraede Y (2000) Low temperature magnetic force microscopy with enhanced sensitivity based on piezoresistive detection. Rev Sci Instrum 71:4468CrossRef Volodin A, Temst K, Van Haesendonck C, Bruynseraede Y (2000) Low temperature magnetic force microscopy with enhanced sensitivity based on piezoresistive detection. Rev Sci Instrum 71:4468CrossRef
Metadaten
Titel
Higher Resolution Scanning Probe Methods for Magnetic Imaging
verfasst von
S. N. Piramanayagam
Binni Varghese
Copyright-Jahr
2015
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-44551-8_12

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.