Skip to main content
Erschienen in: Journal of Materials Science 9/2017

03.01.2017 | Original Paper

Highest coercivity and considerable saturation magnetization of CoFe2O4 nanoparticles with tunable band gap prepared by thermal decomposition approach

verfasst von: Yogendra Kumar, Parasharam M. Shirage

Erschienen in: Journal of Materials Science | Ausgabe 9/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The report states that well-dispersed CoFe2O4 nanoparticles (NPs) with controllable morphology were prepared using an economical and facile one-pot thermal decomposition approach. Cobalt (II) acetylacetonate and Iron (III) acetylacetonate were employed as precursors instead of expensive and toxic pentacarbonyl. The transmission electron microscopy and powder X-ray diffraction investigation show that CoFe2O4 NPs possess cubic morphology, homogeneous size distribution and pure phase structure. Optical band gap was tuned from 1.147 to 0.92 eV and saturation magnetization (M s) increased from 53.91 to 84.01 emu/g for the as-prepared and annealed (700 °C) NPs. The coercivity (H c) enhanced from 1137 to 2109 Oe at room temperature, which is the highest value reported to date for CoFe2O4 NPs synthesized by thermal decomposition. All CoFe2O4 (as-prepared and annealed) NPs showed excellent ferromagnetism behaviour at room temperature. Raman studies of CoFe2O4 NPs confirm the redistribution of Co2+ from octahedral to tetrahedral site. The work demonstrates the great potential of CoFe2O4 NPs as a promising alternative for data storage device applications as well as for opto-magnetic devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ling D, Hyeon T (2013) Iron oxide nanoparticles: chemical design of biocompatible iron oxide nanoparticles for medical applications. Small 9:1450–1466CrossRef Ling D, Hyeon T (2013) Iron oxide nanoparticles: chemical design of biocompatible iron oxide nanoparticles for medical applications. Small 9:1450–1466CrossRef
2.
Zurück zum Zitat Jeong JM, Choi BG, Lee SC, Lee KG, Chang SJ, Han YK, Lee YB, Lee HU, Kwon S, Lee G, Lee CS, Huh YS (2013) Hierarchical hollow spheres of Fe2O3@polyaniline for lithium ion battery anodes. Adv Mater 25:6250–6255CrossRef Jeong JM, Choi BG, Lee SC, Lee KG, Chang SJ, Han YK, Lee YB, Lee HU, Kwon S, Lee G, Lee CS, Huh YS (2013) Hierarchical hollow spheres of Fe2O3@polyaniline for lithium ion battery anodes. Adv Mater 25:6250–6255CrossRef
3.
Zurück zum Zitat Chopdekar RV, Suzuki Y (2006) Magnetoelectric coupling in epitaxial CoFe2O4 on BaTiO3. Appl Phys Lett 89:182506CrossRef Chopdekar RV, Suzuki Y (2006) Magnetoelectric coupling in epitaxial CoFe2O4 on BaTiO3. Appl Phys Lett 89:182506CrossRef
4.
Zurück zum Zitat Zeng H, Li J, Liu JP, Wang ZL, Sun SH (2002) Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420:395CrossRef Zeng H, Li J, Liu JP, Wang ZL, Sun SH (2002) Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420:395CrossRef
5.
Zurück zum Zitat Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale syntheses of monodispersenanocrystals. Nat Mater 3:891CrossRef Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale syntheses of monodispersenanocrystals. Nat Mater 3:891CrossRef
6.
Zurück zum Zitat Sun SH (2006) Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater 18:393–403CrossRef Sun SH (2006) Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater 18:393–403CrossRef
7.
Zurück zum Zitat Qu Y, Yang H, Yang N, Fan Y, Zhu H, Zou G (2006) The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. Mater Lett 60:3548–3552CrossRef Qu Y, Yang H, Yang N, Fan Y, Zhu H, Zou G (2006) The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. Mater Lett 60:3548–3552CrossRef
8.
Zurück zum Zitat Zhang Y, Yang Z, Yin D, Liu Y, Fei C, Xiong R, ShiJ Yan G (2010) Composition and magnetic properties of cobalt ferrite nano-particles prepared by the co-precipitation method. J Magn Magn Mater 322:3470–3475CrossRef Zhang Y, Yang Z, Yin D, Liu Y, Fei C, Xiong R, ShiJ Yan G (2010) Composition and magnetic properties of cobalt ferrite nano-particles prepared by the co-precipitation method. J Magn Magn Mater 322:3470–3475CrossRef
9.
Zurück zum Zitat Maaz K, Mumtaz A, Hasanain SK, Ceylan A (2007) Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J Magn Magn Mater 308:289–295CrossRef Maaz K, Mumtaz A, Hasanain SK, Ceylan A (2007) Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J Magn Magn Mater 308:289–295CrossRef
10.
Zurück zum Zitat Naik SR, SalKer AV (2012) Change in the magnetostructural properties of rare earth doped cobalt ferrites relative to the magnetic anisotropy. J Mater Chem 22:2740–2750CrossRef Naik SR, SalKer AV (2012) Change in the magnetostructural properties of rare earth doped cobalt ferrites relative to the magnetic anisotropy. J Mater Chem 22:2740–2750CrossRef
11.
Zurück zum Zitat Zan F, Ma Y, Ma Q, Xu Y, Dai Z, Zheng G, Wu M, Li G (2013) Magnetic and impedance properties of nanocomposite CoFe2O4/Co0.7Fe0.3 and single-phase CoFe2O4 prepared via a one-step hydrothermal synthesis. J Am Ceram Soc 96:3100–3107 Zan F, Ma Y, Ma Q, Xu Y, Dai Z, Zheng G, Wu M, Li G (2013) Magnetic and impedance properties of nanocomposite CoFe2O4/Co0.7Fe0.3 and single-phase CoFe2O4 prepared via a one-step hydrothermal synthesis. J Am Ceram Soc 96:3100–3107
12.
Zurück zum Zitat Chinnasamy CN, Jeyadevan B, Shinoda K, TohjiK Djayaprawira DJ (2003) Unusually high coercivity and critical single-domain size of nearly monodispersed CoFe2O4 nanoparticles. Appl Phys Lett 83:2862CrossRef Chinnasamy CN, Jeyadevan B, Shinoda K, TohjiK Djayaprawira DJ (2003) Unusually high coercivity and critical single-domain size of nearly monodispersed CoFe2O4 nanoparticles. Appl Phys Lett 83:2862CrossRef
13.
Zurück zum Zitat Eom Y, Abbas M, Noh HY, Kim CG (2016) Morphology-controlled synthesis of highly crystalline Fe3O4 and CoFe2O4 nanoparticles using a facile thermal decomposition method. Rsc Adv 6:15861–15867CrossRef Eom Y, Abbas M, Noh HY, Kim CG (2016) Morphology-controlled synthesis of highly crystalline Fe3O4 and CoFe2O4 nanoparticles using a facile thermal decomposition method. Rsc Adv 6:15861–15867CrossRef
14.
Zurück zum Zitat Mordina B, Tiwari RK, Setua DK, Sharma A (2015) Superior elastomeric nanocomposites with electrospunnanofibers and nanoparticles of CoFe2O4 for magnetorheological applications. Rsc Adv 5:19091–19105CrossRef Mordina B, Tiwari RK, Setua DK, Sharma A (2015) Superior elastomeric nanocomposites with electrospunnanofibers and nanoparticles of CoFe2O4 for magnetorheological applications. Rsc Adv 5:19091–19105CrossRef
15.
Zurück zum Zitat Ravindra AV, Padhan P, Prellier W (2012) Electronic structure and optical band gap of CoFe2O4 thin films. Appl Phys Lett 101:161902CrossRef Ravindra AV, Padhan P, Prellier W (2012) Electronic structure and optical band gap of CoFe2O4 thin films. Appl Phys Lett 101:161902CrossRef
16.
Zurück zum Zitat Holinsworth BS, Mazumdar D, Sims H, Sun QC, Yurtisigi MK, Sarker SK, Gupta A, Butler WH, Musfeldt JL (2013) Chemical tuning of the optical band gap in spinel ferrites: CoFe2O4 versus NiFe2O4. Appl Phys Lett 103:082406CrossRef Holinsworth BS, Mazumdar D, Sims H, Sun QC, Yurtisigi MK, Sarker SK, Gupta A, Butler WH, Musfeldt JL (2013) Chemical tuning of the optical band gap in spinel ferrites: CoFe2O4 versus NiFe2O4. Appl Phys Lett 103:082406CrossRef
17.
Zurück zum Zitat Abbas M, Rao BP, Islam MN, Kim KW, Naga SM, Takahashi M, Kim C (2014) Size-controlled high magnetization CoFe2O4 nanospheres and nanocubes using rapid one-pot sonochemical technique. Ceram Int 40:3269–3276CrossRef Abbas M, Rao BP, Islam MN, Kim KW, Naga SM, Takahashi M, Kim C (2014) Size-controlled high magnetization CoFe2O4 nanospheres and nanocubes using rapid one-pot sonochemical technique. Ceram Int 40:3269–3276CrossRef
18.
Zurück zum Zitat Abbas M, Rao BP, Kim C (2014) Shape and size-controlled synthesis of Ni Zn ferrite nanoparticles by two different routes. Mater Chem Phys 147:443–451CrossRef Abbas M, Rao BP, Kim C (2014) Shape and size-controlled synthesis of Ni Zn ferrite nanoparticles by two different routes. Mater Chem Phys 147:443–451CrossRef
19.
Zurück zum Zitat Ahn T, Kim JH, Yang HM, Lee JW, Kim JD (2012) Formation pathways of magnetite nanoparticles by Co-precipitation method. J Phys Chem C 116:6069–6076CrossRef Ahn T, Kim JH, Yang HM, Lee JW, Kim JD (2012) Formation pathways of magnetite nanoparticles by Co-precipitation method. J Phys Chem C 116:6069–6076CrossRef
20.
Zurück zum Zitat Shirsath et al (2016) Switching of magnetic easy-axis using crystal orientation for large perpendicular coercivity in CoFe2O4 thin film. Sci Rep 6:30074CrossRef Shirsath et al (2016) Switching of magnetic easy-axis using crystal orientation for large perpendicular coercivity in CoFe2O4 thin film. Sci Rep 6:30074CrossRef
21.
Zurück zum Zitat Rana AK, Kumar Y, Saxena N, Das R, Sen S, Shirage PM (2015) Studies on the control of ZnO nanostructures by wet chemical method and plausible mechanism. AIP Adv 5:097118CrossRef Rana AK, Kumar Y, Saxena N, Das R, Sen S, Shirage PM (2015) Studies on the control of ZnO nanostructures by wet chemical method and plausible mechanism. AIP Adv 5:097118CrossRef
22.
Zurück zum Zitat Kumar Y, Rana AK, Bhojane P, Pusty M, Bagwe V, Sen S, Shirage PM (2015) Controlling of ZnO nanostructures by solute concentration and its effect on growth, structural and optical properties. Mater Res Express 2:105017CrossRef Kumar Y, Rana AK, Bhojane P, Pusty M, Bagwe V, Sen S, Shirage PM (2015) Controlling of ZnO nanostructures by solute concentration and its effect on growth, structural and optical properties. Mater Res Express 2:105017CrossRef
23.
Zurück zum Zitat Iqbal J, Rajpoot M, Jan T, Ahmad I (2014) Annealing induced enhancement in magnetic properties of Co0.5Zn0.5Fe2O4 nanoparticles. J Supercond Nov Magn 27:1743–1749CrossRef Iqbal J, Rajpoot M, Jan T, Ahmad I (2014) Annealing induced enhancement in magnetic properties of Co0.5Zn0.5Fe2O4 nanoparticles. J Supercond Nov Magn 27:1743–1749CrossRef
24.
Zurück zum Zitat Wolska E, Riedel E, Wolski W (1992) The evidence of \( {\text{Cd}}^{2 + } {}_{x}{\text{Fe}}_{1 - x}^{3 + } \left[ {{\text{Ni}}_{1 - x}^{2 + } {\text{Fe}}_{1 + x}^{3 + } } \right]{\text{O}}_{4} \) cation distribution based on X-ray and mössbauerdata. Phys Stat Sol 132:K51–K56CrossRef Wolska E, Riedel E, Wolski W (1992) The evidence of \( {\text{Cd}}^{2 + } {}_{x}{\text{Fe}}_{1 - x}^{3 + } \left[ {{\text{Ni}}_{1 - x}^{2 + } {\text{Fe}}_{1 + x}^{3 + } } \right]{\text{O}}_{4} \) cation distribution based on X-ray and mössbauerdata. Phys Stat Sol 132:K51–K56CrossRef
25.
Zurück zum Zitat Wu L, Olivier JP, David B, Wayne I, Alshakim N, Huiyuan Z, SenZ Shouheng S (2014) Monolayer assembly of ferrimagnetic Co x Fe3–x O4 nanocubes for magnetic recording. Nano Lett 14:3395–3399CrossRef Wu L, Olivier JP, David B, Wayne I, Alshakim N, Huiyuan Z, SenZ Shouheng S (2014) Monolayer assembly of ferrimagnetic Co x Fe3–x O4 nanocubes for magnetic recording. Nano Lett 14:3395–3399CrossRef
26.
Zurück zum Zitat Yang H, Ogawa T, Hasegawa D, Takahashi M (2008) Synthesis and magnetic properties of monodisperse magnetite nanocubes. J Appl Phys 103:07D526CrossRef Yang H, Ogawa T, Hasegawa D, Takahashi M (2008) Synthesis and magnetic properties of monodisperse magnetite nanocubes. J Appl Phys 103:07D526CrossRef
27.
Zurück zum Zitat Xia Y, Xoing Y, LimB Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics. Angew Chem Int Ed 48:60–103CrossRef Xia Y, Xoing Y, LimB Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics. Angew Chem Int Ed 48:60–103CrossRef
28.
Zurück zum Zitat Khurshid H, Li W, Chandra S, Phan MH, Hadjipanayis GC, Mukherjee P, Srikanth H (2013) Mechanism and controlled growth of shape and size variant core/shell FeO/Fe3O4 nanoparticles. Nanoscale 5:7942–7952CrossRef Khurshid H, Li W, Chandra S, Phan MH, Hadjipanayis GC, Mukherjee P, Srikanth H (2013) Mechanism and controlled growth of shape and size variant core/shell FeO/Fe3O4 nanoparticles. Nanoscale 5:7942–7952CrossRef
29.
Zurück zum Zitat Zhou B, Zhang YW, Yu YJ, Liao CS, Yan CH (2003) Correlation between structure and intervalence charge-transfer transitions in nanocrystalline CoFe2−x M x O4 (M = Mn, Al, Sc) thin films. Phys Rev B 68:024426CrossRef Zhou B, Zhang YW, Yu YJ, Liao CS, Yan CH (2003) Correlation between structure and intervalence charge-transfer transitions in nanocrystalline CoFe2−x M x O4 (M = Mn, Al, Sc) thin films. Phys Rev B 68:024426CrossRef
30.
Zurück zum Zitat Burns RG (1993) Mineralogical applications of crystal field theory. Cambridge University Press, CambridgeCrossRef Burns RG (1993) Mineralogical applications of crystal field theory. Cambridge University Press, CambridgeCrossRef
31.
Zurück zum Zitat Dileep K, Loukya B, Pachauri N, Gupta A, Datta R (2014) Probing optical band gaps at the nanoscale in NiFe2O4 and CoFe2O4 epitaxial films by high resolution electron energy loss spectroscopy. Appl Phys Lett 111:103505 Dileep K, Loukya B, Pachauri N, Gupta A, Datta R (2014) Probing optical band gaps at the nanoscale in NiFe2O4 and CoFe2O4 epitaxial films by high resolution electron energy loss spectroscopy. Appl Phys Lett 111:103505
32.
Zurück zum Zitat Kumar CSSR (2012) Raman spectroscopy for nanomaterials characterization. Springer, HeidelbergCrossRef Kumar CSSR (2012) Raman spectroscopy for nanomaterials characterization. Springer, HeidelbergCrossRef
33.
Zurück zum Zitat Chandramohan P, Srinivasan MP, Velmurugan S, Narasimhan SV (2011) Cation distribution and particle size effect on Raman spectrum of CoFe2O4.J. Solid State Chem 184:89–96CrossRef Chandramohan P, Srinivasan MP, Velmurugan S, Narasimhan SV (2011) Cation distribution and particle size effect on Raman spectrum of CoFe2O4.J. Solid State Chem 184:89–96CrossRef
34.
Zurück zum Zitat Yu T, Shen ZX, Shi Y, Ding J (2002) Cation migration and magnetic ordering in spinel CoFe2O4 powder: micro-Raman scattering study. J Phys 14:L613 Yu T, Shen ZX, Shi Y, Ding J (2002) Cation migration and magnetic ordering in spinel CoFe2O4 powder: micro-Raman scattering study. J Phys 14:L613
35.
Zurück zum Zitat Chamritski I, Burns G (2005) Infrared- and raman-active phonons of magnetite, maghemite, and hematite: a computer simulation and spectroscopic study. J Phys Chem B 109:4965–4968CrossRef Chamritski I, Burns G (2005) Infrared- and raman-active phonons of magnetite, maghemite, and hematite: a computer simulation and spectroscopic study. J Phys Chem B 109:4965–4968CrossRef
36.
Zurück zum Zitat Fan X, Guan J, Cao X, Wang W, Mou F (2010) Low-temperature synthesis, magnetic and microwave electromagnetic properties of substoichiometric spinel cobalt ferrite octahedra. Eur J Inorg Chem 3:419–426CrossRef Fan X, Guan J, Cao X, Wang W, Mou F (2010) Low-temperature synthesis, magnetic and microwave electromagnetic properties of substoichiometric spinel cobalt ferrite octahedra. Eur J Inorg Chem 3:419–426CrossRef
37.
Zurück zum Zitat Dunitz JD, Orgel LE (1957) Electronic properties of transition-metal oxides-II: cation distribution amongst octahedral and tetrahedral sites. J Phys Chem Solids 3:318–323CrossRef Dunitz JD, Orgel LE (1957) Electronic properties of transition-metal oxides-II: cation distribution amongst octahedral and tetrahedral sites. J Phys Chem Solids 3:318–323CrossRef
38.
Zurück zum Zitat Ammar S, Helfen A, Jouini N, Fiévet F, Rosenman I, Villain F, MoliniéPh Danot M (2001) Magnetic properties of ultrafine cobalt ferriteparticles synthesized by hydrolysis in a polyol medium. J Mater Chem 11:186–192CrossRef Ammar S, Helfen A, Jouini N, Fiévet F, Rosenman I, Villain F, MoliniéPh Danot M (2001) Magnetic properties of ultrafine cobalt ferriteparticles synthesized by hydrolysis in a polyol medium. J Mater Chem 11:186–192CrossRef
39.
Zurück zum Zitat Hanh N, Quy OK, Thuy NP, Thung LD (2003) Synthesis of cobalt ferrite nanocrystallites by the forced hydrolysis method and investigation of their magnetic properties. Physica B 327:382–384CrossRef Hanh N, Quy OK, Thuy NP, Thung LD (2003) Synthesis of cobalt ferrite nanocrystallites by the forced hydrolysis method and investigation of their magnetic properties. Physica B 327:382–384CrossRef
40.
Zurück zum Zitat Smit J, Wijn HPJ (1959) Ferrites. Wiley, New York, p 369 Smit J, Wijn HPJ (1959) Ferrites. Wiley, New York, p 369
41.
Zurück zum Zitat Kodama RH, Berkowitz AE (1996) Surface spin disorder in NiFe2O4 nanoparticles. Phys Rev Lett 77:394CrossRef Kodama RH, Berkowitz AE (1996) Surface spin disorder in NiFe2O4 nanoparticles. Phys Rev Lett 77:394CrossRef
42.
Zurück zum Zitat Turtelli RS, Atif M, Mehmooda N, Kubel F, Biernacka K, Linert W, Grössingera R, Cz Kapusta, Sikora M (2012) Interplay between the cation distribution and production methods in cobalt ferrite. Mater Chem Phys 132:832–838CrossRef Turtelli RS, Atif M, Mehmooda N, Kubel F, Biernacka K, Linert W, Grössingera R, Cz Kapusta, Sikora M (2012) Interplay between the cation distribution and production methods in cobalt ferrite. Mater Chem Phys 132:832–838CrossRef
43.
Zurück zum Zitat Sharma D, Khare N (2014) Tuning of optical bandgap and magnetization of CoFe2O4 thin films. App Phys Lett 105:032404CrossRef Sharma D, Khare N (2014) Tuning of optical bandgap and magnetization of CoFe2O4 thin films. App Phys Lett 105:032404CrossRef
44.
Zurück zum Zitat Fan X, Guan J, Cao X, Wang W, Mou F (2010) Low-temperature synthesis, magnetic and microwave electromagnetic properties of substoichiometric spinel cobalt ferrite octahedra. Eur J Inorg Chem 40:419–426CrossRef Fan X, Guan J, Cao X, Wang W, Mou F (2010) Low-temperature synthesis, magnetic and microwave electromagnetic properties of substoichiometric spinel cobalt ferrite octahedra. Eur J Inorg Chem 40:419–426CrossRef
45.
Zurück zum Zitat Yang W, Yu Y, Wang L, Yang C, Li H (2015) Controlled synthesis and assembly into anisotropic arrays of magnetic cobalt-substituted magnetite nanocubes. Nanoscale 7:2877–2882CrossRef Yang W, Yu Y, Wang L, Yang C, Li H (2015) Controlled synthesis and assembly into anisotropic arrays of magnetic cobalt-substituted magnetite nanocubes. Nanoscale 7:2877–2882CrossRef
46.
Zurück zum Zitat Soundararajan D, Kim KH (2014) Synthesis of CoFe2O4 magnetic nanoparticles by thermal decomposition. J Magn 19:5–9CrossRef Soundararajan D, Kim KH (2014) Synthesis of CoFe2O4 magnetic nanoparticles by thermal decomposition. J Magn 19:5–9CrossRef
47.
Zurück zum Zitat Xu ST, Ma YQ, Zheng GH, Dai ZX (2015) Simultaneous effects of surface spins: rarely large coercivity, high remanence magnetization and jumps in the hysteresis loops observed in CoFe2O4 nanoparticles. Nanoscale 7:6520–6526CrossRef Xu ST, Ma YQ, Zheng GH, Dai ZX (2015) Simultaneous effects of surface spins: rarely large coercivity, high remanence magnetization and jumps in the hysteresis loops observed in CoFe2O4 nanoparticles. Nanoscale 7:6520–6526CrossRef
48.
Zurück zum Zitat Moya C, Morales MP, Batlle X, Labarta A (2015) Tuning the magnetic properties of Co-ferrite nanoparticles through the 1,2-hexadecanediol concentration in the reaction mixture. Phys Chem Chem Phys 17:13143–13149CrossRef Moya C, Morales MP, Batlle X, Labarta A (2015) Tuning the magnetic properties of Co-ferrite nanoparticles through the 1,2-hexadecanediol concentration in the reaction mixture. Phys Chem Chem Phys 17:13143–13149CrossRef
49.
Zurück zum Zitat Tegus O, Bruck E, Buschow KHJ, Boer FRD (2002) Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415:150CrossRef Tegus O, Bruck E, Buschow KHJ, Boer FRD (2002) Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415:150CrossRef
50.
Zurück zum Zitat Franco AJ, Zapf V (2008) Temperature dependence of magnetic anisotropy in nanoparticles of Co x Fe(3−x)O4. J Magn Magn Mater 320:709–713CrossRef Franco AJ, Zapf V (2008) Temperature dependence of magnetic anisotropy in nanoparticles of Co x Fe(3−x)O4. J Magn Magn Mater 320:709–713CrossRef
51.
52.
Zurück zum Zitat Kumar L, Kumar P, Kar M (2013) Cation distribution by Rietveld technique and magnetocrystalline anisotropy of Zn substituted nanocrystalline cobalt ferrite. J Alloys Compd 551:72–81CrossRef Kumar L, Kumar P, Kar M (2013) Cation distribution by Rietveld technique and magnetocrystalline anisotropy of Zn substituted nanocrystalline cobalt ferrite. J Alloys Compd 551:72–81CrossRef
53.
Zurück zum Zitat Tomita S, Jonsson PE, Akamatsu K, Nawafune H, Takayama H (2007) Controlled magnetic properties of Ni nanoparticles embedded in polyimide films. Phys Rev B 76:174432CrossRef Tomita S, Jonsson PE, Akamatsu K, Nawafune H, Takayama H (2007) Controlled magnetic properties of Ni nanoparticles embedded in polyimide films. Phys Rev B 76:174432CrossRef
54.
Zurück zum Zitat Kurtan U, Topkaya R, Baykal A (2013) A sol–gel auto-combustion synthesis of PVP/CoFe2O4 Nano-composite and its magnetic characterization. Mater Res Bull 48:4889–4895CrossRef Kurtan U, Topkaya R, Baykal A (2013) A sol–gel auto-combustion synthesis of PVP/CoFe2O4 Nano-composite and its magnetic characterization. Mater Res Bull 48:4889–4895CrossRef
55.
Zurück zum Zitat Vargas JM, Nunes WC, Socolovsky LM, Knobel M, Zanchet D (2005) Effect of dipolar interaction observed in iron-based nanoparticles. Phys Rev B 72:184428CrossRef Vargas JM, Nunes WC, Socolovsky LM, Knobel M, Zanchet D (2005) Effect of dipolar interaction observed in iron-based nanoparticles. Phys Rev B 72:184428CrossRef
56.
Zurück zum Zitat Kneller EF, Luborsky FE (1963) Particle size dependence of coercivity and remanence of single domain particles. J Appl Phys 34:656–658CrossRef Kneller EF, Luborsky FE (1963) Particle size dependence of coercivity and remanence of single domain particles. J Appl Phys 34:656–658CrossRef
57.
Zurück zum Zitat Guimaraes AP (2009) Nano-science and technology: principles of nanomagnetism. Springer, BerlinCrossRef Guimaraes AP (2009) Nano-science and technology: principles of nanomagnetism. Springer, BerlinCrossRef
58.
Zurück zum Zitat Pal D, Mandal M, Chaudhuri A, Das B, Sarkar D, Mandal K (2010) Micelles induced high coercivity in single domain cobalt-ferrite nanoparticles. J Appl Phys 108:124317CrossRef Pal D, Mandal M, Chaudhuri A, Das B, Sarkar D, Mandal K (2010) Micelles induced high coercivity in single domain cobalt-ferrite nanoparticles. J Appl Phys 108:124317CrossRef
Metadaten
Titel
Highest coercivity and considerable saturation magnetization of CoFe2O4 nanoparticles with tunable band gap prepared by thermal decomposition approach
verfasst von
Yogendra Kumar
Parasharam M. Shirage
Publikationsdatum
03.01.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 9/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0719-5

Weitere Artikel der Ausgabe 9/2017

Journal of Materials Science 9/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.