Skip to main content
Erschienen in: Journal of Materials Science 2/2019

20.09.2018 | Electronic materials

Highly active and stable electrocatalysts of FeS2–reduced graphene oxide for hydrogen evolution

verfasst von: Jibo Jiang, Liying Zhu, Haotian Chen, Yaoxin Sun, Wei Qian, Hualin Lin, Sheng Han

Erschienen in: Journal of Materials Science | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electrocatalytic hydrogen evolution is the most cost-effective method for producing hydrogen as a large-scale clean energy source. Thus, catalysts of low-cost hydrogen evolution are developing at great speed. FeS2–reduced graphene oxide (RGO) hybrid catalysts are synthesized with the use of abundant and inexpensive component worldwide. The catalyst has satisfactory electrocatalytic performance and excellent stability in 0.5 M H2SO4 solution. The catalyst supported by RGO is the ideal electrocatalyst with satisfactory electrical conductivity with 61 mV dec−1 of the Tafel slope. What is more, the current density changes slightly in 36 h and the catalytic performance is relatively stable at 200 mV overpotential. Therefore, the catalyst supported by RGO has high potential for industrial production due to its simple composition and satisfactory electrocatalytic effect.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Turner J (2004) Sustainable hydrogen production. Science 305:972–974CrossRef Turner J (2004) Sustainable hydrogen production. Science 305:972–974CrossRef
2.
Zurück zum Zitat Yang W, Shi W, Chen C, Zhang T, Liu J, Wang Z, Zhou J (2017) Efficiency analysis of a novel electricity and heat co-generation system in the basis of aluminum–water reaction. Int J Hydrogen Energy 42:3598–3604CrossRef Yang W, Shi W, Chen C, Zhang T, Liu J, Wang Z, Zhou J (2017) Efficiency analysis of a novel electricity and heat co-generation system in the basis of aluminum–water reaction. Int J Hydrogen Energy 42:3598–3604CrossRef
3.
Zurück zum Zitat Zeng M, Li Y (2015) Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 3:14942–14962CrossRef Zeng M, Li Y (2015) Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 3:14942–14962CrossRef
4.
Zurück zum Zitat Huang SY, Sodano D, Leonard T (2017) Cobalt-doped iron sulfide as an electrocatalyst for hydrogen evolution. J Electrochem Soc 164:F276–F282CrossRef Huang SY, Sodano D, Leonard T (2017) Cobalt-doped iron sulfide as an electrocatalyst for hydrogen evolution. J Electrochem Soc 164:F276–F282CrossRef
5.
Zurück zum Zitat Sheng W, Gasteiger HA, Shao-Horn Y (2010) Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J Electrochem Soc 157(11):B1529–B1536CrossRef Sheng W, Gasteiger HA, Shao-Horn Y (2010) Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J Electrochem Soc 157(11):B1529–B1536CrossRef
6.
Zurück zum Zitat Esposito DV, Hunt ST, Stottlemyer AL, Dobson KD, McCandless BE, Birkmire RW, Chen JG (2010) Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates. Angew Chem Int Ed Engl 49:9859–9862CrossRef Esposito DV, Hunt ST, Stottlemyer AL, Dobson KD, McCandless BE, Birkmire RW, Chen JG (2010) Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates. Angew Chem Int Ed Engl 49:9859–9862CrossRef
7.
Zurück zum Zitat Xia Z (2016) Hydrogen evolution: guiding principles. Nat Energy 1(10):16155CrossRef Xia Z (2016) Hydrogen evolution: guiding principles. Nat Energy 1(10):16155CrossRef
8.
Zurück zum Zitat Wang DY, Gong M, Chou HL, Pan CJ, Chen HA, Wu Y, Lin MC, Guan M, Yang J, Chen CW, Wang YL, Hwang BJ, Chen CC, Dai H (2015) Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction. J Am Chem Soc 137:1587–1592CrossRef Wang DY, Gong M, Chou HL, Pan CJ, Chen HA, Wu Y, Lin MC, Guan M, Yang J, Chen CW, Wang YL, Hwang BJ, Chen CC, Dai H (2015) Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction. J Am Chem Soc 137:1587–1592CrossRef
9.
Zurück zum Zitat Faber MS, Lukowski MA, Ding Q, Kaiser NS, Jin S (2014) Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis. J Phys Chem C Nanomater Interfaces 118:21347–21356CrossRef Faber MS, Lukowski MA, Ding Q, Kaiser NS, Jin S (2014) Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis. J Phys Chem C Nanomater Interfaces 118:21347–21356CrossRef
10.
Zurück zum Zitat Li H, Du M, Mleczko MJ, Koh AL, Nishi Y, Pop E, Bard AJ, Zheng X (2016) Kinetic study of hydrogen evolution reaction over strained MoS2 with sulfur vacancies using scanning electrochemical microscopy. J Am Chem Soc 138:5123–5129CrossRef Li H, Du M, Mleczko MJ, Koh AL, Nishi Y, Pop E, Bard AJ, Zheng X (2016) Kinetic study of hydrogen evolution reaction over strained MoS2 with sulfur vacancies using scanning electrochemical microscopy. J Am Chem Soc 138:5123–5129CrossRef
11.
Zurück zum Zitat Zhao X, Ma X, Sun J, Li D, Yang X (2016) Enhanced catalytic activities of surfactant-assisted exfoliated WS(2) nanodots for hydrogen evolution. ACS Nano 10:2159–2166CrossRef Zhao X, Ma X, Sun J, Li D, Yang X (2016) Enhanced catalytic activities of surfactant-assisted exfoliated WS(2) nanodots for hydrogen evolution. ACS Nano 10:2159–2166CrossRef
12.
Zurück zum Zitat Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135:9267–9270CrossRef Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135:9267–9270CrossRef
13.
Zurück zum Zitat Kuo TR, Chen WT, Liao HJ, Yang YH, Yen HC, Liao TW, Wen CY, Lee YC, Chen CC, Wang DY (2017) Improving hydrogen evolution activity of earth-abundant cobalt-doped iron pyrite catalysts by surface modification with phosphide. Small 13:1603356CrossRef Kuo TR, Chen WT, Liao HJ, Yang YH, Yen HC, Liao TW, Wen CY, Lee YC, Chen CC, Wang DY (2017) Improving hydrogen evolution activity of earth-abundant cobalt-doped iron pyrite catalysts by surface modification with phosphide. Small 13:1603356CrossRef
14.
Zurück zum Zitat Kou Z, Xi K, Pu Z, Mu S (2017) Constructing carbon-cohered high-index (222) faceted tantalum carbide nanocrystals as a robust hydrogen evolution catalyst. Nano Energy 36:374–380CrossRef Kou Z, Xi K, Pu Z, Mu S (2017) Constructing carbon-cohered high-index (222) faceted tantalum carbide nanocrystals as a robust hydrogen evolution catalyst. Nano Energy 36:374–380CrossRef
15.
Zurück zum Zitat Li JS, Wang Y, Liu CH, Li SL, Wang YG, Dong LZ, Dai ZH, Li YF, Lan YQ (2016) Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat Commun 7:11204CrossRef Li JS, Wang Y, Liu CH, Li SL, Wang YG, Dong LZ, Dai ZH, Li YF, Lan YQ (2016) Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat Commun 7:11204CrossRef
16.
Zurück zum Zitat Cao B, Veith GM, Neuefeind JC, Adzic RR, Khalifah PG (2013) Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J Am Chem Soc 135:19186–19192CrossRef Cao B, Veith GM, Neuefeind JC, Adzic RR, Khalifah PG (2013) Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J Am Chem Soc 135:19186–19192CrossRef
17.
Zurück zum Zitat Chen WF, Sasaki K, Ma C, Frenkel AI, Marinkovic N, Muckerman JT, Zhu Y, Adzic RR (2012) Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. Angew Chem Int Ed Engl 51:6131–6135CrossRef Chen WF, Sasaki K, Ma C, Frenkel AI, Marinkovic N, Muckerman JT, Zhu Y, Adzic RR (2012) Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. Angew Chem Int Ed Engl 51:6131–6135CrossRef
18.
Zurück zum Zitat Fan Z, Luo Z, Huang X, Li B, Chen Y, Wang J, Hu Y, Zhang H (2016) Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. J Am Chem Soc 138:1414–1419CrossRef Fan Z, Luo Z, Huang X, Li B, Chen Y, Wang J, Hu Y, Zhang H (2016) Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. J Am Chem Soc 138:1414–1419CrossRef
19.
Zurück zum Zitat Kamat PV (2013) Quantum dot solar cells. The next big thing in photovoltaics. J Phys Chem Lett 4:908–918CrossRef Kamat PV (2013) Quantum dot solar cells. The next big thing in photovoltaics. J Phys Chem Lett 4:908–918CrossRef
20.
Zurück zum Zitat Duan X, Gao Z, Chang J, Wu D, Ma P, He J, Xu F, Gao S, Jiang K (2013) CoS2–graphene composite as efficient catalytic counter electrode for dye-sensitized solar cell. Electrochim Acta 114:173–179CrossRef Duan X, Gao Z, Chang J, Wu D, Ma P, He J, Xu F, Gao S, Jiang K (2013) CoS2–graphene composite as efficient catalytic counter electrode for dye-sensitized solar cell. Electrochim Acta 114:173–179CrossRef
21.
Zurück zum Zitat Liang D, Caban-Acevedo M, Kaiser NS, Jin S (2014) Gated Hall effect of nanoplate devices reveals surface-state-induced surface inversion in iron pyrite semiconductor. Nano Lett 14:6754–6760CrossRef Liang D, Caban-Acevedo M, Kaiser NS, Jin S (2014) Gated Hall effect of nanoplate devices reveals surface-state-induced surface inversion in iron pyrite semiconductor. Nano Lett 14:6754–6760CrossRef
22.
Zurück zum Zitat Wang DY, Jiang YT, Lin CC, Li SS, Wang YT, Chen CC, Chen CW (2012) Solution-processable pyrite FeS(2) nanocrystals for the fabrication of heterojunction photodiodes with visible to NIR photodetection. Adv Mater 24:3415–3420CrossRef Wang DY, Jiang YT, Lin CC, Li SS, Wang YT, Chen CC, Chen CW (2012) Solution-processable pyrite FeS(2) nanocrystals for the fabrication of heterojunction photodiodes with visible to NIR photodetection. Adv Mater 24:3415–3420CrossRef
23.
Zurück zum Zitat Jasion D, Barforoush JM, Qiao Q, Zhu Y, Ren S, Leonard KC (2015) Low-dimensional hyperthin FeS2 nanostructures for efficient and stable hydrogen evolution electrocatalysis. ACS Catal 5:6653–6657CrossRef Jasion D, Barforoush JM, Qiao Q, Zhu Y, Ren S, Leonard KC (2015) Low-dimensional hyperthin FeS2 nanostructures for efficient and stable hydrogen evolution electrocatalysis. ACS Catal 5:6653–6657CrossRef
24.
Zurück zum Zitat Fu Q, Bao X (2017) Surface chemistry and catalysis confined under two-dimensional materials. Chem Soc Rev 46:1842–1874CrossRef Fu Q, Bao X (2017) Surface chemistry and catalysis confined under two-dimensional materials. Chem Soc Rev 46:1842–1874CrossRef
25.
Zurück zum Zitat Khan AH, Ghosh S, Pradhan B, Dalui A, Shrestha LK, Acharya S, Ariga K (2017) Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications. Bull Chem Soc Jpn 90:627–648CrossRef Khan AH, Ghosh S, Pradhan B, Dalui A, Shrestha LK, Acharya S, Ariga K (2017) Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications. Bull Chem Soc Jpn 90:627–648CrossRef
26.
Zurück zum Zitat Zuo Y, Luo J, Cheng M, Zhang K, Dong R (2018) Synthesis, characterization and enhanced electromagnetic properties of BaTiO3/NiFe2O4-decorated reduced graphene oxide nanosheets. J Alloy Compd 744:310–320CrossRef Zuo Y, Luo J, Cheng M, Zhang K, Dong R (2018) Synthesis, characterization and enhanced electromagnetic properties of BaTiO3/NiFe2O4-decorated reduced graphene oxide nanosheets. J Alloy Compd 744:310–320CrossRef
27.
Zurück zum Zitat Luo J, Xu Y, Yao W, Jiang C, Xu J (2015) Synthesis and microwave absorption properties of reduced graphene oxide-magnetic porous nanospheres-polyaniline composites. Compos Sci Technol 117:315–321CrossRef Luo J, Xu Y, Yao W, Jiang C, Xu J (2015) Synthesis and microwave absorption properties of reduced graphene oxide-magnetic porous nanospheres-polyaniline composites. Compos Sci Technol 117:315–321CrossRef
28.
Zurück zum Zitat Norskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1:37–46CrossRef Norskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1:37–46CrossRef
29.
Zurück zum Zitat Xu G-R, Hui J-J, Huang T, Chen Y, Lee J-M (2015) Platinum nanocuboids supported on reduced graphene oxide as efficient electrocatalyst for the hydrogen evolution reaction. J Power Sources 285:393–399CrossRef Xu G-R, Hui J-J, Huang T, Chen Y, Lee J-M (2015) Platinum nanocuboids supported on reduced graphene oxide as efficient electrocatalyst for the hydrogen evolution reaction. J Power Sources 285:393–399CrossRef
30.
Zurück zum Zitat Wang S, Liao L, Shi Z, Xiao J, Gao Q, Zhang Y, Liu B, Tang Y (2016) Mo2C/reduced-graphene-oxide nanocomposite: an efficient electrocatalyst for the hydrogen evolution reaction. ChemElectroChem 3:2110–2115CrossRef Wang S, Liao L, Shi Z, Xiao J, Gao Q, Zhang Y, Liu B, Tang Y (2016) Mo2C/reduced-graphene-oxide nanocomposite: an efficient electrocatalyst for the hydrogen evolution reaction. ChemElectroChem 3:2110–2115CrossRef
31.
Zurück zum Zitat Akhavan O (2015) Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets. Carbon 81:158–166CrossRef Akhavan O (2015) Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets. Carbon 81:158–166CrossRef
32.
Zurück zum Zitat Kong D, Cha JJ, Wang H, Lee HR, Cui Y (2013) First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ Sci 6:3553–3558CrossRef Kong D, Cha JJ, Wang H, Lee HR, Cui Y (2013) First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ Sci 6:3553–3558CrossRef
33.
Zurück zum Zitat Chen Y, Xu S, Li Y, Jacob RJ, Kuang Y, Liu B, Wang Y, Pastel G, Salamanca-Riba LG, Zachariah MR, Hu L (2017) FeS2 nanoparticles embedded in reduced graphene oxide toward robust, high-performance electrocatalysts. Adv Energy Mater 7:1700482CrossRef Chen Y, Xu S, Li Y, Jacob RJ, Kuang Y, Liu B, Wang Y, Pastel G, Salamanca-Riba LG, Zachariah MR, Hu L (2017) FeS2 nanoparticles embedded in reduced graphene oxide toward robust, high-performance electrocatalysts. Adv Energy Mater 7:1700482CrossRef
34.
Zurück zum Zitat Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M (2004) Thin-film particles of graphite oxide 1. Carbon 42:2929–2937 Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M (2004) Thin-film particles of graphite oxide 1. Carbon 42:2929–2937
35.
Zurück zum Zitat Xu Z, Gao C (2010) In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules 43:6716–6723CrossRef Xu Z, Gao C (2010) In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules 43:6716–6723CrossRef
36.
Zurück zum Zitat Li J, Xiao G, Chen C, Li R, Yan D (2013) Superior dispersions of reduced graphene oxide synthesized by using gallic acid as a reductant and stabilizer. J Mater Chem A 1:1481–1487CrossRef Li J, Xiao G, Chen C, Li R, Yan D (2013) Superior dispersions of reduced graphene oxide synthesized by using gallic acid as a reductant and stabilizer. J Mater Chem A 1:1481–1487CrossRef
37.
Zurück zum Zitat Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299CrossRef Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299CrossRef
38.
Zurück zum Zitat Wang F, Yang X, Dong B, Yu X, Xue H, Feng L (2018) A FeP powder electrocatalyst for the hydrogen evolution reaction. Electrochem Commun 92:33–38CrossRef Wang F, Yang X, Dong B, Yu X, Xue H, Feng L (2018) A FeP powder electrocatalyst for the hydrogen evolution reaction. Electrochem Commun 92:33–38CrossRef
39.
Zurück zum Zitat Li F, Zhao X, Mahmood J, Okyay MS, Jung SM, Ahmad I, Kim SJ, Han GF, Park N, Baek JB (2017) Macroporous inverse opal-like MoxC with incorporated mo vacancies for significantly enhanced hydrogen evolution. ACS Nano 11:7527–7533CrossRef Li F, Zhao X, Mahmood J, Okyay MS, Jung SM, Ahmad I, Kim SJ, Han GF, Park N, Baek JB (2017) Macroporous inverse opal-like MoxC with incorporated mo vacancies for significantly enhanced hydrogen evolution. ACS Nano 11:7527–7533CrossRef
40.
Zurück zum Zitat Duan J, Chen S, Jaroniec M, Qiao SZ (2015) Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS Nano 9:931–940CrossRef Duan J, Chen S, Jaroniec M, Qiao SZ (2015) Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS Nano 9:931–940CrossRef
41.
Zurück zum Zitat Huang J-F, Wu Y-C (2018) Making Ag present pt-like activity for hydrogen evolution reaction. ACS Sustain Chem Eng 6:8285–8290CrossRef Huang J-F, Wu Y-C (2018) Making Ag present pt-like activity for hydrogen evolution reaction. ACS Sustain Chem Eng 6:8285–8290CrossRef
42.
Zurück zum Zitat Yu F, Zhou H, Huang Y, Sun J, Qin F, Bao J, Goddard WA 3rd, Chen S, Ren Z (2018) High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat Commun 9:2551CrossRef Yu F, Zhou H, Huang Y, Sun J, Qin F, Bao J, Goddard WA 3rd, Chen S, Ren Z (2018) High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat Commun 9:2551CrossRef
43.
Zurück zum Zitat Samad L, Bladow SM, Ding Q, Zhuo J, Jacobberger RM, Arnold MS, Jin S (2016) Layer-controlled chemical vapor deposition growth of MoS2 vertical heterostructures via van der Waals epitaxy. ACS Nano 10:7039–7046CrossRef Samad L, Bladow SM, Ding Q, Zhuo J, Jacobberger RM, Arnold MS, Jin S (2016) Layer-controlled chemical vapor deposition growth of MoS2 vertical heterostructures via van der Waals epitaxy. ACS Nano 10:7039–7046CrossRef
44.
Zurück zum Zitat Greeley J, Jaramillo TF, Bonde J, Chorkendorff IB, Norskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913CrossRef Greeley J, Jaramillo TF, Bonde J, Chorkendorff IB, Norskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913CrossRef
45.
Zurück zum Zitat Akhavan O, Choobtashani M, Ghaderi E (2012) Protein degradation and rna efflux of viruses photocatalyzed by graphene–tungsten oxide composite under visible light irradiation. J Phys Chem C 116:9653–9659CrossRef Akhavan O, Choobtashani M, Ghaderi E (2012) Protein degradation and rna efflux of viruses photocatalyzed by graphene–tungsten oxide composite under visible light irradiation. J Phys Chem C 116:9653–9659CrossRef
46.
Zurück zum Zitat Zou X, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44:5148–5180CrossRef Zou X, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44:5148–5180CrossRef
47.
Zurück zum Zitat Xu Y, Wu R, Zhang J, Shi Y, Zhang B (2013) Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction. Chem Commun (Camb) 49:6656–6658CrossRef Xu Y, Wu R, Zhang J, Shi Y, Zhang B (2013) Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction. Chem Commun (Camb) 49:6656–6658CrossRef
48.
Zurück zum Zitat Di Giovanni C, Wang W-A, Nowak S, Grenèche J-M, Lecoq H, Mouton L, Giraud M, Tard C (2014) Bioinspired iron sulfide nanoparticles for cheap and long-lived electrocatalytic molecular hydrogen evolution in neutral water. ACS Catal 4:681–687CrossRef Di Giovanni C, Wang W-A, Nowak S, Grenèche J-M, Lecoq H, Mouton L, Giraud M, Tard C (2014) Bioinspired iron sulfide nanoparticles for cheap and long-lived electrocatalytic molecular hydrogen evolution in neutral water. ACS Catal 4:681–687CrossRef
Metadaten
Titel
Highly active and stable electrocatalysts of FeS2–reduced graphene oxide for hydrogen evolution
verfasst von
Jibo Jiang
Liying Zhu
Haotian Chen
Yaoxin Sun
Wei Qian
Hualin Lin
Sheng Han
Publikationsdatum
20.09.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 2/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2913-0

Weitere Artikel der Ausgabe 2/2019

Journal of Materials Science 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.