Skip to main content
Erschienen in: Journal of Materials Science 19/2020

03.04.2020 | Energy materials

Highly stretchable CNT/MnO2 nanosheets fiber supercapacitors with high energy density

verfasst von: Xianhong Zheng, Xiaoshuang Zhou, Jiang Xu, Lihua Zou, Wenqi Nie, Xinghao Hu, Shengping Dai, Yiping Qiu, Ningyi Yuan

Erschienen in: Journal of Materials Science | Ausgabe 19/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fiber-shaped supercapacitors (FSSCs) are promising devices in the wearable electronics because of their good flexibility, weavability, tiny volume and lightweight. However, the low stretchability and energy density limit their practical applications on wearable electronics requiring deformation and high energy density. It remains challenging to increase the energy densities of FSSCs without sacrificing their stretchability. Herein, we design and construct a wearable, stretchable and high-energy density CNT/MnO2 nanosheets FSSCs by wrapping the fiber supercapacitors on the spandex yarn. The CNT/MnO2 FSSCs show high stretchability up to 80%, ultrahigh capacitances of 685 mF cm−2 and energy density of 15.2 μWh cm−2. Furthermore, the CNT/MnO2 FSSCs have the good flexibility, stability and ultralong cycle life. In addition, we also develop the in situ characterization strategy to evaluate the structure evolution during the stretching process of the CNT/MnO2 FSSCs for better understanding the structure evolution of stretchable FSSCs. This work paves the way for the high-performance stretchable energy storage devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y (2018) Advanced carbon for flexible and wearable electronics. Adv Mater 31:@@1801072@@CrossRef Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y (2018) Advanced carbon for flexible and wearable electronics. Adv Mater 31:@@1801072@@CrossRef
2.
Zurück zum Zitat Koo JH, Kim DC, Shim HJ, Kim TH, Kim DH (2018) Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv Funct Mater 28(35):@@1801834@@CrossRef Koo JH, Kim DC, Shim HJ, Kim TH, Kim DH (2018) Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv Funct Mater 28(35):@@1801834@@CrossRef
3.
Zurück zum Zitat Zeng W, Shu L, Li Q, Chen S, Wang F, Tao X-M (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26(31):5310–5336CrossRef Zeng W, Shu L, Li Q, Chen S, Wang F, Tao X-M (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26(31):5310–5336CrossRef
4.
Zurück zum Zitat Sun H, Zhang Y, Zhang J, Sun X, Peng H (2017) Energy harvesting and storage in 1D devices. Nat Rev Mater 2(6):@@17023@@CrossRef Sun H, Zhang Y, Zhang J, Sun X, Peng H (2017) Energy harvesting and storage in 1D devices. Nat Rev Mater 2(6):@@17023@@CrossRef
5.
Zurück zum Zitat Noh J, Yoon C-M, Kim YK, Jang J (2017) High performance asymmetric supercapacitor twisted from carbon fiber/MnO2 and carbon fiber/MoO3. Carbon 116:470–478CrossRef Noh J, Yoon C-M, Kim YK, Jang J (2017) High performance asymmetric supercapacitor twisted from carbon fiber/MnO2 and carbon fiber/MoO3. Carbon 116:470–478CrossRef
6.
Zurück zum Zitat Wu X, Han Z, Zheng X, Yao S, Yang X, Zhai T (2017) Core–shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties. Nano Energy 31:410–417CrossRef Wu X, Han Z, Zheng X, Yao S, Yang X, Zhai T (2017) Core–shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties. Nano Energy 31:410–417CrossRef
7.
Zurück zum Zitat Zheng X, Zhang K, Yao L, Qiu Y, Wang S (2018) Hierarchically porous sheath–core graphene-based fiber-shaped supercapacitors with high energy density. J Mater Chem A 6(3):896–907CrossRef Zheng X, Zhang K, Yao L, Qiu Y, Wang S (2018) Hierarchically porous sheath–core graphene-based fiber-shaped supercapacitors with high energy density. J Mater Chem A 6(3):896–907CrossRef
8.
Zurück zum Zitat Zhao X, Zheng B, Huang T, Gao C (2015) Graphene-based single fiber supercapacitor with a coaxial structure. Nanoscale 7(21):9399–9404CrossRef Zhao X, Zheng B, Huang T, Gao C (2015) Graphene-based single fiber supercapacitor with a coaxial structure. Nanoscale 7(21):9399–9404CrossRef
9.
Zurück zum Zitat Zhang Q, Wang X, Pan Z, Sun J, Zhao J, Zhang J, Zhang C, Tang L, Luo J, Song B, Zhang Z, Lu W, Li Q, Zhang Y, Yao Y (2017) Wrapping aligned carbon nanotube composite sheets around vanadium nitride nanowire arrays for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh energy density. Nano Lett 17(4):2719–2726CrossRef Zhang Q, Wang X, Pan Z, Sun J, Zhao J, Zhang J, Zhang C, Tang L, Luo J, Song B, Zhang Z, Lu W, Li Q, Zhang Y, Yao Y (2017) Wrapping aligned carbon nanotube composite sheets around vanadium nitride nanowire arrays for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh energy density. Nano Lett 17(4):2719–2726CrossRef
10.
Zurück zum Zitat Sun H, You X, Deng J, Chen X, Yang Z, Ren J, Peng H (2014) Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Adv Mater 26(18):2868–2873CrossRef Sun H, You X, Deng J, Chen X, Yang Z, Ren J, Peng H (2014) Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Adv Mater 26(18):2868–2873CrossRef
11.
Zurück zum Zitat Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y (2014) Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat Nanotechnol 9(7):555–562CrossRef Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y (2014) Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat Nanotechnol 9(7):555–562CrossRef
12.
Zurück zum Zitat De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539CrossRef De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539CrossRef
13.
Zurück zum Zitat Wang K, Meng Q, Zhang Y, Wei Z, Miao M (2013) High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv Mater 25(10):1494–1498CrossRef Wang K, Meng Q, Zhang Y, Wei Z, Miao M (2013) High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv Mater 25(10):1494–1498CrossRef
14.
Zurück zum Zitat Su F, Lv X, Miao M (2015) High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3O4 and NiO nanoparticles. Small 11(7):854–861CrossRef Su F, Lv X, Miao M (2015) High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3O4 and NiO nanoparticles. Small 11(7):854–861CrossRef
15.
Zurück zum Zitat Khandoker N, Hawkins SC, Ibrahim R, Huynh CP, Deng F (2011) Tensile strength of spinnable multiwall carbon nanotubes. Procedia Eng 10:2572–2578CrossRef Khandoker N, Hawkins SC, Ibrahim R, Huynh CP, Deng F (2011) Tensile strength of spinnable multiwall carbon nanotubes. Procedia Eng 10:2572–2578CrossRef
16.
Zurück zum Zitat Kou L, Huang T, Zheng B, Han Y, Zhao X, Gopalsamy K, Sun H, Gao C (2014) Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat Commun 5:@@3754@@CrossRef Kou L, Huang T, Zheng B, Han Y, Zhao X, Gopalsamy K, Sun H, Gao C (2014) Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat Commun 5:@@3754@@CrossRef
17.
Zurück zum Zitat Choi C, Lee JA, Choi AY, Kim YT, Lepró X, Lima MD, Baughman RH, Kim SJ (2014) Flexible supercapacitor made of carbon nanotube yarn with internal pores. Adv Mater 26(13):2059–2065CrossRef Choi C, Lee JA, Choi AY, Kim YT, Lepró X, Lima MD, Baughman RH, Kim SJ (2014) Flexible supercapacitor made of carbon nanotube yarn with internal pores. Adv Mater 26(13):2059–2065CrossRef
18.
Zurück zum Zitat Ren J, Bai W, Guan G, Zhang Y, Peng H (2013) Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv Mater 25(41):5965–5970CrossRef Ren J, Bai W, Guan G, Zhang Y, Peng H (2013) Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv Mater 25(41):5965–5970CrossRef
19.
Zurück zum Zitat Ren J, Li L, Chen C, Chen X, Cai Z, Qiu L, Wang Y, Zhu X, Peng H (2013) Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv Mater 25(8):1155–1159CrossRef Ren J, Li L, Chen C, Chen X, Cai Z, Qiu L, Wang Y, Zhu X, Peng H (2013) Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv Mater 25(8):1155–1159CrossRef
20.
Zurück zum Zitat Cheng G, Yang W, Dong C, Kou T, Bai Q, Wang H, Zhang Z (2015) Ultrathin mesoporous NiO nanosheet-anchored 3D nickel foam as an advanced electrode for supercapacitors. J Mater Chem A 3(33):17469–17478CrossRef Cheng G, Yang W, Dong C, Kou T, Bai Q, Wang H, Zhang Z (2015) Ultrathin mesoporous NiO nanosheet-anchored 3D nickel foam as an advanced electrode for supercapacitors. J Mater Chem A 3(33):17469–17478CrossRef
21.
Zurück zum Zitat Li S, Qi L, Lu L, Wang H (2012) Facile preparation and performance of mesoporous manganese oxide for supercapacitors utilizing neutral aqueous electrolytes. RSC Adv 2(8):3298–3308CrossRef Li S, Qi L, Lu L, Wang H (2012) Facile preparation and performance of mesoporous manganese oxide for supercapacitors utilizing neutral aqueous electrolytes. RSC Adv 2(8):3298–3308CrossRef
22.
Zurück zum Zitat Naoi K, Simon P (2008) New materials and new configurations for advanced electrochemical capacitors. J Electrochem Soc 17(1):34–37 Naoi K, Simon P (2008) New materials and new configurations for advanced electrochemical capacitors. J Electrochem Soc 17(1):34–37
23.
Zurück zum Zitat Singu BS, Yoon KR (2017) Synthesis and characterization of MnO2-decorated graphene for supercapacitors. Electrochim Acta 231:749–758CrossRef Singu BS, Yoon KR (2017) Synthesis and characterization of MnO2-decorated graphene for supercapacitors. Electrochim Acta 231:749–758CrossRef
24.
Zurück zum Zitat Yin X, Tang C, Zhang L, Yu ZG, Gong H (2016) Chemical insights into the roles of nanowire cores on the growth and supercapacitor performances of Ni–Co–O/Ni(OH)2 core/shell electrodes. Sci Rep 6(1):1–12CrossRef Yin X, Tang C, Zhang L, Yu ZG, Gong H (2016) Chemical insights into the roles of nanowire cores on the growth and supercapacitor performances of Ni–Co–O/Ni(OH)2 core/shell electrodes. Sci Rep 6(1):1–12CrossRef
25.
Zurück zum Zitat Lee HY, Goodenough JB (1999) Supercapacitor behavior with KCl electrolyte. J Solid State Chem 144(1):220–223CrossRef Lee HY, Goodenough JB (1999) Supercapacitor behavior with KCl electrolyte. J Solid State Chem 144(1):220–223CrossRef
26.
Zurück zum Zitat Choi C, Sim HJ, Spinks GM, Lepró X, Baughman RH, Kim SJ (2016) Elastomeric and dynamic MnO2/CNT core–shell structure coiled yarn supercapacitor. Adv Energy Mater 6(5):@@1502119@@CrossRef Choi C, Sim HJ, Spinks GM, Lepró X, Baughman RH, Kim SJ (2016) Elastomeric and dynamic MnO2/CNT core–shell structure coiled yarn supercapacitor. Adv Energy Mater 6(5):@@1502119@@CrossRef
27.
Zurück zum Zitat Yang Z, Deng J, Chen X, Ren J, Peng H (2013) A highly stretchable, fiber-shaped supercapacitor. Angew Chem Int Ed 52(50):13453–13457CrossRef Yang Z, Deng J, Chen X, Ren J, Peng H (2013) A highly stretchable, fiber-shaped supercapacitor. Angew Chem Int Ed 52(50):13453–13457CrossRef
28.
Zurück zum Zitat Chen T, Hao R, Peng H, Dai L (2015) High-performance, stretchable, wire-shaped supercapacitors. Angew Chem Int Ed 54(2):618–622 Chen T, Hao R, Peng H, Dai L (2015) High-performance, stretchable, wire-shaped supercapacitors. Angew Chem Int Ed 54(2):618–622
29.
Zurück zum Zitat Xu J, Ding J, Zhou X, Zhang Y, Zhu W, Liu Z, Ge S, Yuan N, Fang S, Baughman RH (2017) Enhanced rate performance of flexible and stretchable linear supercapacitors based on polyaniline@Au@carbon nanotube with ultrafast axial electron transport. J Power Sources 340:302–308CrossRef Xu J, Ding J, Zhou X, Zhang Y, Zhu W, Liu Z, Ge S, Yuan N, Fang S, Baughman RH (2017) Enhanced rate performance of flexible and stretchable linear supercapacitors based on polyaniline@Au@carbon nanotube with ultrafast axial electron transport. J Power Sources 340:302–308CrossRef
30.
Zurück zum Zitat Zhang Z, Deng J, Li X, Yang Z, He S, Chen X, Guan G, Ren J, Peng H (2015) Superelastic supercapacitors with high performances during stretching. Adv Mater 27(2):356–362CrossRef Zhang Z, Deng J, Li X, Yang Z, He S, Chen X, Guan G, Ren J, Peng H (2015) Superelastic supercapacitors with high performances during stretching. Adv Mater 27(2):356–362CrossRef
31.
Zurück zum Zitat Choi C, Kim JH, Sim HJ, Di J, Baughman RH, Kim SJ (2017) Microscopically buckled and macroscopically coiled fibers for ultra-stretchable supercapacitors. Adv Energy Mater 7(6):@@1602021@@CrossRef Choi C, Kim JH, Sim HJ, Di J, Baughman RH, Kim SJ (2017) Microscopically buckled and macroscopically coiled fibers for ultra-stretchable supercapacitors. Adv Energy Mater 7(6):@@1602021@@CrossRef
32.
Zurück zum Zitat Shang Y, Wang C, He X, Li J, Peng Q, Shi E, Wang R, Du S, Cao A, Li Y (2015) Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions. Nano Energy 12:401–409CrossRef Shang Y, Wang C, He X, Li J, Peng Q, Shi E, Wang R, Du S, Cao A, Li Y (2015) Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions. Nano Energy 12:401–409CrossRef
33.
Zurück zum Zitat Yu J, Lu W, Smith JP, Booksh KS, Meng L, Huang Y, Li Q, Byun J-H, Oh Y, Yan Y, Chou T-W (2017) A high performance stretchable asymmetric fiber-shaped supercapacitor with a core–sheath helical structure. Adv Energy Mater 7(3):@@1600976@@CrossRef Yu J, Lu W, Smith JP, Booksh KS, Meng L, Huang Y, Li Q, Byun J-H, Oh Y, Yan Y, Chou T-W (2017) A high performance stretchable asymmetric fiber-shaped supercapacitor with a core–sheath helical structure. Adv Energy Mater 7(3):@@1600976@@CrossRef
34.
Zurück zum Zitat Xu P, Gu T, Cao Z, Wei B, Yu J, Li F, Byun J-H, Lu W, Li Q, Chou T-W (2014) Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv Energy Mater 4(3):@@1300759@@CrossRef Xu P, Gu T, Cao Z, Wei B, Yu J, Li F, Byun J-H, Lu W, Li Q, Chou T-W (2014) Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv Energy Mater 4(3):@@1300759@@CrossRef
35.
Zurück zum Zitat Liu P, Zhu Y, Gao X, Huang Y, Wang Y, Qin S, Zhang Y (2018) Rational construction of bowl-like MnO2 nanosheets with excellent electrochemical performance for supercapacitor electrodes. Chem Eng J 350:79–88CrossRef Liu P, Zhu Y, Gao X, Huang Y, Wang Y, Qin S, Zhang Y (2018) Rational construction of bowl-like MnO2 nanosheets with excellent electrochemical performance for supercapacitor electrodes. Chem Eng J 350:79–88CrossRef
36.
Zurück zum Zitat Li K, Feng S, Jing C, Chen Y, Liu X, Zhang Y, Zhou L (2019) Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors. Chem Commun 55(91):13773–13776CrossRef Li K, Feng S, Jing C, Chen Y, Liu X, Zhang Y, Zhou L (2019) Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors. Chem Commun 55(91):13773–13776CrossRef
37.
Zurück zum Zitat Li K, Liu X, Zheng T, Jiang D, Zhou Z, Liu C, Zhang X, Zhang Y, Losic D (2019) Tuning MnO2 to FeOOH replicas with bio-template 3D morphology as electrodes for high performance asymmetric supercapacitors. Chem Eng J 370:136–147CrossRef Li K, Liu X, Zheng T, Jiang D, Zhou Z, Liu C, Zhang X, Zhang Y, Losic D (2019) Tuning MnO2 to FeOOH replicas with bio-template 3D morphology as electrodes for high performance asymmetric supercapacitors. Chem Eng J 370:136–147CrossRef
38.
Zurück zum Zitat Huang Y, Lu J, Kang S, Weng D, Han L, Wang Y (2019) Synthesis and application of MnO2/PANI/MWCNT ternary nanocomposite as an electrode material for supercapacitors. Int J Electrochem Sci 14:9298–9310CrossRef Huang Y, Lu J, Kang S, Weng D, Han L, Wang Y (2019) Synthesis and application of MnO2/PANI/MWCNT ternary nanocomposite as an electrode material for supercapacitors. Int J Electrochem Sci 14:9298–9310CrossRef
39.
Zurück zum Zitat Zhang M, Atkinson KR, Baughman RH (2004) Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306(5700):1358–1361CrossRef Zhang M, Atkinson KR, Baughman RH (2004) Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306(5700):1358–1361CrossRef
40.
Zurück zum Zitat Zheng X, Yao L, Qiu Y, Wang S, Zhang K (2019) Core–sheath porous polyaniline nanorods/graphene fiber-shaped supercapacitors with high specific capacitance and rate capability. ACS Appl Energy Mater 2(6):4335–4344CrossRef Zheng X, Yao L, Qiu Y, Wang S, Zhang K (2019) Core–sheath porous polyaniline nanorods/graphene fiber-shaped supercapacitors with high specific capacitance and rate capability. ACS Appl Energy Mater 2(6):4335–4344CrossRef
41.
Zurück zum Zitat Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112(11):4406–4417CrossRef Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112(11):4406–4417CrossRef
42.
Zurück zum Zitat Dravid VP, Liu S, Kappes MM (1991) Transmission electron microscopy of chromatographically purified solid state C60 and C70. Chem Phys Lett 185(1):75–81CrossRef Dravid VP, Liu S, Kappes MM (1991) Transmission electron microscopy of chromatographically purified solid state C60 and C70. Chem Phys Lett 185(1):75–81CrossRef
43.
Zurück zum Zitat Rossi LM, Silva FP, Vono LL, Kiyohara PK, Duarte EL, Itri R, Landers R, Machado G (2007) Superparamagnetic nanoparticle-supported palladium: a highly stable magnetically recoverable and reusable catalyst for hydrogenation reactions. Green Chem 9(4):379–385CrossRef Rossi LM, Silva FP, Vono LL, Kiyohara PK, Duarte EL, Itri R, Landers R, Machado G (2007) Superparamagnetic nanoparticle-supported palladium: a highly stable magnetically recoverable and reusable catalyst for hydrogenation reactions. Green Chem 9(4):379–385CrossRef
44.
Zurück zum Zitat Liu Z, Xu K, Sun H, Yin S (2015) One-step synthesis of single-layer MnO2 nanosheets with multi-role sodium dodecyl sulfate for high-performance pseudocapacitors. Small 11(18):2182–2191CrossRef Liu Z, Xu K, Sun H, Yin S (2015) One-step synthesis of single-layer MnO2 nanosheets with multi-role sodium dodecyl sulfate for high-performance pseudocapacitors. Small 11(18):2182–2191CrossRef
45.
Zurück zum Zitat Kim SH, Haines CS, Li N, Kim KJ, Mun TJ, Choi C, Di J, Oh YJ, Oviedo JP, Bykova J (2017) Harvesting electrical energy from carbon nanotube yarn twist. Science 357(6353):773–778CrossRef Kim SH, Haines CS, Li N, Kim KJ, Mun TJ, Choi C, Di J, Oh YJ, Oviedo JP, Bykova J (2017) Harvesting electrical energy from carbon nanotube yarn twist. Science 357(6353):773–778CrossRef
46.
Zurück zum Zitat Foroughi J, Spinks GM, Antiohos D, Mirabedini A, Gambhir S, Wallace GG, Ghorbani SR, Peleckis G, Kozlov ME, Lima MD (2014) Highly conductive carbon nanotube-graphene hybrid yarn. Adv Funct Mater 24(37):5859–5865CrossRef Foroughi J, Spinks GM, Antiohos D, Mirabedini A, Gambhir S, Wallace GG, Ghorbani SR, Peleckis G, Kozlov ME, Lima MD (2014) Highly conductive carbon nanotube-graphene hybrid yarn. Adv Funct Mater 24(37):5859–5865CrossRef
47.
Zurück zum Zitat Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45(21):5925–5950CrossRef Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45(21):5925–5950CrossRef
48.
Zurück zum Zitat Liu J-h, Xu X-y, Lu W, Xiong X, Ouyang X, Zhao C, Wang F, Qin S-y, Hong J-l, Tang J-n (2018) A high performance all-solid-state flexible supercapacitor based on carbon nanotube fiber/carbon nanotubes/polyaniline with a double core–sheathed structure. Electrochim Acta 283:366–373CrossRef Liu J-h, Xu X-y, Lu W, Xiong X, Ouyang X, Zhao C, Wang F, Qin S-y, Hong J-l, Tang J-n (2018) A high performance all-solid-state flexible supercapacitor based on carbon nanotube fiber/carbon nanotubes/polyaniline with a double core–sheathed structure. Electrochim Acta 283:366–373CrossRef
49.
Zurück zum Zitat Choi C, Kim KM, Kim KJ, Lepró X, Spinks GM, Baughman RH, Kim SJ (2016) Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors. Nat Commun 7(1):1–8 Choi C, Kim KM, Kim KJ, Lepró X, Spinks GM, Baughman RH, Kim SJ (2016) Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors. Nat Commun 7(1):1–8
50.
Zurück zum Zitat Lee JA, Shin MK, Kim SH, Cho HU, Spinks GM, Wallace GG, Lima MD, Lepró X, Kozlov ME, Baughman RH (2013) Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat Commun 4:@@1970@@CrossRef Lee JA, Shin MK, Kim SH, Cho HU, Spinks GM, Wallace GG, Lima MD, Lepró X, Kozlov ME, Baughman RH (2013) Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat Commun 4:@@1970@@CrossRef
51.
Zurück zum Zitat Qu G, Cheng J, Li X, Yuan D, Chen P, Chen X, Wang B, Peng H (2016) A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv Mater 28(19):3646–3652CrossRef Qu G, Cheng J, Li X, Yuan D, Chen P, Chen X, Wang B, Peng H (2016) A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv Mater 28(19):3646–3652CrossRef
52.
Zurück zum Zitat Huang M, Wang L, Chen S, Kang L, Lei Z, Shi F, Xu H, Liu Z-H (2017) Highly flexible all-solid-state cable-type supercapacitors based on Cu/reduced graphene oxide/manganese dioxide fibers. RSC Adv 7(17):10092–10099CrossRef Huang M, Wang L, Chen S, Kang L, Lei Z, Shi F, Xu H, Liu Z-H (2017) Highly flexible all-solid-state cable-type supercapacitors based on Cu/reduced graphene oxide/manganese dioxide fibers. RSC Adv 7(17):10092–10099CrossRef
53.
Zurück zum Zitat Li H, Liang J, Li H, Zheng X, Tao Y, Huang Z-H, Yang Q-H (2019) Activated carbon fibers with manganese dioxide coating for flexible fiber supercapacitors with high capacitive performance. J Energy Chem 31:95–100CrossRef Li H, Liang J, Li H, Zheng X, Tao Y, Huang Z-H, Yang Q-H (2019) Activated carbon fibers with manganese dioxide coating for flexible fiber supercapacitors with high capacitive performance. J Energy Chem 31:95–100CrossRef
54.
Zurück zum Zitat Xie S, Liu S, Cheng F, Lu X (2018) Recent advances toward achieving high-performance carbon-fiber materials for supercapacitors. Chemelectrochem 5(4):571–582CrossRef Xie S, Liu S, Cheng F, Lu X (2018) Recent advances toward achieving high-performance carbon-fiber materials for supercapacitors. Chemelectrochem 5(4):571–582CrossRef
55.
Zurück zum Zitat Meng Y, Zhao Y, Hu C, Cheng H, Hu Y, Zhang Z, Shi G, Qu L (2013) All-graphene core–sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater 25(16):2326–2331CrossRef Meng Y, Zhao Y, Hu C, Cheng H, Hu Y, Zhang Z, Shi G, Qu L (2013) All-graphene core–sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater 25(16):2326–2331CrossRef
56.
Zurück zum Zitat Cai W, Lai T, Ye J (2015) A spinneret as the key component for surface-porous graphene fibers in high energy density micro-supercapacitors. J Mater Chem A 3(9):5060–5066CrossRef Cai W, Lai T, Ye J (2015) A spinneret as the key component for surface-porous graphene fibers in high energy density micro-supercapacitors. J Mater Chem A 3(9):5060–5066CrossRef
57.
Zurück zum Zitat Xiao X, Li T, Yang P, Gao Y, Jin H, Ni W, Zhan W, Zhang X, Cao Y, Zhong J (2012) Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6(10):9200–9206CrossRef Xiao X, Li T, Yang P, Gao Y, Jin H, Ni W, Zhan W, Zhang X, Cao Y, Zhong J (2012) Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6(10):9200–9206CrossRef
58.
Zurück zum Zitat El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074):1326–1330CrossRef El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074):1326–1330CrossRef
59.
Zurück zum Zitat Guo F, Xu R, Cui X, Zhang L, Wang K, Yao Y, Wei J (2016) High performance of stretchable carbon nanotube–polypyrrole fiber supercapacitors under dynamic deformation and temperature variation. J Mater Chem A 4(23):9311–9318CrossRef Guo F, Xu R, Cui X, Zhang L, Wang K, Yao Y, Wei J (2016) High performance of stretchable carbon nanotube–polypyrrole fiber supercapacitors under dynamic deformation and temperature variation. J Mater Chem A 4(23):9311–9318CrossRef
60.
Zurück zum Zitat Li M, Zu M, Yu J, Cheng H, Li Q (2017) Stretchable fiber supercapacitors with high volumetric performance based on buckled MnO2/oxidized carbon nanotube fiber electrodes. Small 13(12):@@1602994@@CrossRef Li M, Zu M, Yu J, Cheng H, Li Q (2017) Stretchable fiber supercapacitors with high volumetric performance based on buckled MnO2/oxidized carbon nanotube fiber electrodes. Small 13(12):@@1602994@@CrossRef
61.
Zurück zum Zitat Choi C, Lee JM, Kim SH, Kim SJ, Di J, Baughman RH (2016) Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors. Nano Lett 16(12):7677–7684CrossRef Choi C, Lee JM, Kim SH, Kim SJ, Di J, Baughman RH (2016) Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors. Nano Lett 16(12):7677–7684CrossRef
62.
Zurück zum Zitat Sun J, Huang Y, Fu C, Wang Z, Huang Y, Zhu M, Zhi C, Hu H (2016) High-performance stretchable yarn supercapacitor based on PPy@ CNTs@ urethane elastic fiber core spun yarn. Nano Energy 27:230–237CrossRef Sun J, Huang Y, Fu C, Wang Z, Huang Y, Zhu M, Zhi C, Hu H (2016) High-performance stretchable yarn supercapacitor based on PPy@ CNTs@ urethane elastic fiber core spun yarn. Nano Energy 27:230–237CrossRef
63.
Zurück zum Zitat Zhang Q, Sun J, Pan Z, Zhang J, Zhao J, Wang X, Zhang C, Yao Y, Lu W, Li Q (2017) Stretchable fiber-shaped asymmetric supercapacitors with ultrahigh energy density. Nano Energy 39:219–228CrossRef Zhang Q, Sun J, Pan Z, Zhang J, Zhao J, Wang X, Zhang C, Yao Y, Lu W, Li Q (2017) Stretchable fiber-shaped asymmetric supercapacitors with ultrahigh energy density. Nano Energy 39:219–228CrossRef
64.
Zurück zum Zitat Xu P, Wei B, Cao Z, Zheng J, Gong K, Li F, Yu J, Li Q, Lu W, Byun J-H (2015) Stretchable wire-shaped asymmetric supercapacitors based on pristine and MnO2 coated carbon nanotube fibers. ACS Nano 9(6):6088–6096CrossRef Xu P, Wei B, Cao Z, Zheng J, Gong K, Li F, Yu J, Li Q, Lu W, Byun J-H (2015) Stretchable wire-shaped asymmetric supercapacitors based on pristine and MnO2 coated carbon nanotube fibers. ACS Nano 9(6):6088–6096CrossRef
65.
Zurück zum Zitat Chen X, Qiu L, Ren J, Guan G, Lin H, Zhang Z, Chen P, Wang Y, Peng H (2013) Novel electric double-layer capacitor with a coaxial fiber structure. Adv Mater 25(44):6436–6441CrossRef Chen X, Qiu L, Ren J, Guan G, Lin H, Zhang Z, Chen P, Wang Y, Peng H (2013) Novel electric double-layer capacitor with a coaxial fiber structure. Adv Mater 25(44):6436–6441CrossRef
66.
Zurück zum Zitat Choi C, Kim SH, Sim HJ, Lee JA, Choi AY, Kim YT, Lepró X, Spinks GM, Baughman RH, Kim SJ (2015) Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors. Sci Rep 5:@@9387@@CrossRef Choi C, Kim SH, Sim HJ, Lee JA, Choi AY, Kim YT, Lepró X, Spinks GM, Baughman RH, Kim SJ (2015) Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors. Sci Rep 5:@@9387@@CrossRef
Metadaten
Titel
Highly stretchable CNT/MnO2 nanosheets fiber supercapacitors with high energy density
verfasst von
Xianhong Zheng
Xiaoshuang Zhou
Jiang Xu
Lihua Zou
Wenqi Nie
Xinghao Hu
Shengping Dai
Yiping Qiu
Ningyi Yuan
Publikationsdatum
03.04.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04608-4

Weitere Artikel der Ausgabe 19/2020

Journal of Materials Science 19/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.