Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Cellulose 5/2022

12.07.2021 | Original Research

Histochemical structure and tensile properties of birch cork cell walls

verfasst von: Shingo Kiyoto, Junji Sugiyama

Erschienen in: Cellulose | Ausgabe 5/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Tensile tests of birch cork were performed in the tangential direction. Birch cork in the wet state showed significantly higher extensibility than those in the dried state. The histochemical structure of birch cork was investigated by microscopic observation and spectroscopic analysis. Birch cork cell walls showed a two-layered structure and the inner material bordering cell wall. In transmission electron micrographs, osmium tetroxide stained the outer layer and inner material, whereas potassium permanganate stained the inner layer and inner material. After removal of suberin and lignin, only inner layer remained and Fourier-transformed infrared spectra showed the cellulose I pattern. Polarizing light micrographs indicated that molecular chains in the outer layer and inner material were oriented perpendicular to suberin lamination, whereas those in the inner layer showed longitudinal orientation. These results suggested that the outer layer and inner material mainly consist of suberin, whereas the inner layer and compound middle lamella consist of lignin, cellulose, and other polysaccharides. We hypothesized a hierarchical model of the birch cork cell wall. The lignified cell wall with helical arrangement of cellulose microfibrils is sandwiched between suberized outer layer and inner material. Cellulose microfibrils in the inner layer bear tensile loads. In the wet state, water and cellulose transfer tensile stress. In the dried state, this stress-transferal system functions poorly and fewer cells bear stress. Suberin in the outer layer and inner material may prevent absolute drying to maintain mechanical properties of the bark and to bear tensile stress caused by trunk diameter growth.
Literatur
Zurück zum Zitat Anjos O, Pereira H, Rosa ME (2010) Tensile properties of cork in the tangential direction: variation with quality, porosity, density and radial position in the cork plank. Mater Des 31:2085–2090 CrossRef Anjos O, Pereira H, Rosa ME (2010) Tensile properties of cork in the tangential direction: variation with quality, porosity, density and radial position in the cork plank. Mater Des 31:2085–2090 CrossRef
Zurück zum Zitat Bhat KM (1982) Anatomy, basic density and shrinkage of birch bark. IAWA Bull n s 3:207–213 CrossRef Bhat KM (1982) Anatomy, basic density and shrinkage of birch bark. IAWA Bull n s 3:207–213 CrossRef
Zurück zum Zitat Bland DE, Foster RC, Logan AF (1971) The mechanism of permanganate and osmium tetroxide fixation and the distribution of lignin in the cell wall of Pinus radiata. Holzforschung 25:137–143 CrossRef Bland DE, Foster RC, Logan AF (1971) The mechanism of permanganate and osmium tetroxide fixation and the distribution of lignin in the cell wall of Pinus radiata. Holzforschung 25:137–143 CrossRef
Zurück zum Zitat Ekman R, Eckerman C (1985) Aliphatic carboxylic acids from suberin in birch outer bark by hydrolysis, methanolysis and alkali fusion. Pap Puu 67:255–273 Ekman R, Eckerman C (1985) Aliphatic carboxylic acids from suberin in birch outer bark by hydrolysis, methanolysis and alkali fusion. Pap Puu 67:255–273
Zurück zum Zitat Gandini A, Neto CP, Silvestre AJD (2006) Suberin: a promising renewable resource for novel macromolecular materials. Prog Polym Sci 31:878–892 CrossRef Gandini A, Neto CP, Silvestre AJD (2006) Suberin: a promising renewable resource for novel macromolecular materials. Prog Polym Sci 31:878–892 CrossRef
Zurück zum Zitat Gibson LJ, Easterling KE, Ash MF (1981) The structure and mechanics of cork. Proc R Soc Lond 377:99–117 Gibson LJ, Easterling KE, Ash MF (1981) The structure and mechanics of cork. Proc R Soc Lond 377:99–117
Zurück zum Zitat Kobayashi K, Ura Y, Kimura S, Sugiyama J (2018) Outstanding toughness of cherry bark achieved by helical spring structure of rigid cellulose fiber combined with flexible layers of lipid polymers. Adv Mater 30:1705315 CrossRef Kobayashi K, Ura Y, Kimura S, Sugiyama J (2018) Outstanding toughness of cherry bark achieved by helical spring structure of rigid cellulose fiber combined with flexible layers of lipid polymers. Adv Mater 30:1705315 CrossRef
Zurück zum Zitat Pereira H (2015) The rationale behind cork properties: a review of structure and chemistry. BioResources 10:6207–6229 CrossRef Pereira H (2015) The rationale behind cork properties: a review of structure and chemistry. BioResources 10:6207–6229 CrossRef
Zurück zum Zitat Reedy MK (1965) Section staining for electron microscopy. Incompatibility of methyl nadic anhydride with permanganates. J Cell Biol 26:309–311 CrossRef Reedy MK (1965) Section staining for electron microscopy. Incompatibility of methyl nadic anhydride with permanganates. J Cell Biol 26:309–311 CrossRef
Zurück zum Zitat Ryser U, Holloway PJ (1985) Ultrastructure and chemistry of soluble and polymeric lipids in cell walls from seed coats and fibres of Gossypium species. Planta 163:151–163 CrossRef Ryser U, Holloway PJ (1985) Ultrastructure and chemistry of soluble and polymeric lipids in cell walls from seed coats and fibres of Gossypium species. Planta 163:151–163 CrossRef
Zurück zum Zitat Schmutz A, Jenny T, Amrhein N, Ryser U (1993) Caffeic acid and glycerol are constituents of the suberin layers in green cotton fibres. Planta 189:453–460 CrossRef Schmutz A, Jenny T, Amrhein N, Ryser U (1993) Caffeic acid and glycerol are constituents of the suberin layers in green cotton fibres. Planta 189:453–460 CrossRef
Zurück zum Zitat Schmutz A, Buchala AJ, Ryser U (1996) Changing the dimensions of suberin lamellae of green cotton fibers with a specific inhibitor of the endoplasmic reticulum-associated fatty acid elongases. Plant Physiol 11:403–411 CrossRef Schmutz A, Buchala AJ, Ryser U (1996) Changing the dimensions of suberin lamellae of green cotton fibers with a specific inhibitor of the endoplasmic reticulum-associated fatty acid elongases. Plant Physiol 11:403–411 CrossRef
Zurück zum Zitat Schönherr J, Ziegler H (1980) Water permeability of Betula periderm. Planta 147:345–354 CrossRef Schönherr J, Ziegler H (1980) Water permeability of Betula periderm. Planta 147:345–354 CrossRef
Zurück zum Zitat Serra O, Soler M, Hohn C, Sauveplane V, Pinot F, Franke R, Schreiber L, Prat S, Molinas M, Figueras M (2009) CYP86A33-targeted gene silencing in potato tuber alters suberin composition, distorts suberin lamellae, and impairs the periderm’s water barrier function. Plant Physiol 149:1050–1060 CrossRef Serra O, Soler M, Hohn C, Sauveplane V, Pinot F, Franke R, Schreiber L, Prat S, Molinas M, Figueras M (2009) CYP86A33-targeted gene silencing in potato tuber alters suberin composition, distorts suberin lamellae, and impairs the periderm’s water barrier function. Plant Physiol 149:1050–1060 CrossRef
Zurück zum Zitat Shibui H, Sano Y (2018) Structure and Formation of Phellem of Betula maximowicziana. IAWA J 39:18–36 CrossRef Shibui H, Sano Y (2018) Structure and Formation of Phellem of Betula maximowicziana. IAWA J 39:18–36 CrossRef
Zurück zum Zitat Sitte P (1962) Zum Feinbau der Suberinschichten im Flaschenkork. Protoplasma 54:555–559 CrossRef Sitte P (1962) Zum Feinbau der Suberinschichten im Flaschenkork. Protoplasma 54:555–559 CrossRef
Zurück zum Zitat Teixeira RT, Pereira H (2010) Suberized cell walls of cork from cork oak differ from other species. Microsc Microanal 16:569–575 CrossRef Teixeira RT, Pereira H (2010) Suberized cell walls of cork from cork oak differ from other species. Microsc Microanal 16:569–575 CrossRef
Zurück zum Zitat Xu X, Schneider E, Chien AT, Wudl F (1997) Nature’s high-strength semitransparent film: the remarkable mechanical properties of Prunus Serrula bark. Chem Mater 9:1906–1908 CrossRef Xu X, Schneider E, Chien AT, Wudl F (1997) Nature’s high-strength semitransparent film: the remarkable mechanical properties of Prunus Serrula bark. Chem Mater 9:1906–1908 CrossRef
Zurück zum Zitat Zhang X, Chen S, Ling Z, Zhou X, Ding DY, Kim YS, Xu F (2017) Method for removing spectral contaminants to improve analysis of raman imaging data. Sci Rep 7:39891 CrossRef Zhang X, Chen S, Ling Z, Zhou X, Ding DY, Kim YS, Xu F (2017) Method for removing spectral contaminants to improve analysis of raman imaging data. Sci Rep 7:39891 CrossRef
Metadaten
Titel
Histochemical structure and tensile properties of birch cork cell walls
verfasst von
Shingo Kiyoto
Junji Sugiyama
Publikationsdatum
12.07.2021
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 5/2022
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-021-04036-w

Weitere Artikel der Ausgabe 5/2022

Cellulose 5/2022 Zur Ausgabe