Skip to main content
Erschienen in: Meccanica 14/2017

07.02.2017 | Active behavior in soft matter and Mechanobiology

Homogenized modeling for vascularized poroelastic materials

verfasst von: Raimondo Penta, José Merodio

Erschienen in: Meccanica | Ausgabe 14/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new mathematical model for the macroscopic behavior of a material composed of a poroelastic solid embedding a Newtonian fluid network phase (also referred to as vascularized poroelastic material), with fluid transport between them, is derived via asymptotic homogenization. The typical distance between the vessels/channels (microscale) is much smaller than the average size of a whole domain (macroscale). The homogeneous and isotropic Biot’s equation (in the quasi-static case and in absence of volume forces) for the poroelastic phase and the Stokes’ problem for the fluid network are coupled through a fluid-structure interaction problem which accounts for fluid transport between the two phases; the latter is driven by the pressure difference between the two compartments. The averaging process results in a new system of partial differential equations that formally reads as a double poroelastic, globally mass conserving, model, together with a new constitutive relationship for the whole material which encodes the role of both pore and fluid network pressures. The mathematical model describes the mutual interplay among fluid filling the pores, flow in the network, transport between compartments, and linear elastic deformation of the (potentially compressible) elastic matrix comprising the poroelastic phase. Assuming periodicity at the microscale level, the model is computationally feasible, as it holds on the macroscale only (where the microstructure is smoothed out), and encodes geometrical information on the microvessels in its coefficients, which are to be computed solving classical periodic cell problems. Recently developed double porosity models are recovered when deformations of the elastic matrix are neglected. The new model is relevant to a wide range of applications, such as fluid in porous, fractured rocks, blood transport in vascularized, deformable tumors, and interactions across different hierarchical levels of porosity in the bone.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
These two paper differ in some scaling assumptions concerning the drug transport analysis, but the double porosity fluid transport models, for a purely Newtonian blood vessels’ rheology and for macroscopically uniform media, coincide, as actually demonstrated in [35].
 
2
The vector field \(\varvec{w}_p\) that satisfies Darcy’s law (8) actually represents the average relative fluid velocity in the porous medium and is also referred to as the discharge, flux, or filtration velocity. It is indeed related to the specific relative velocity \(\varvec{v}_p-\dot{\varvec{u}}\) via the interstitial porosity \(\phi\). However, since we conveniently carry out our analysis in terms of \(\varvec{w}_p\) hereinafter, we simply refer to \(\varvec{w}_p\) as the relative interstitial velocity.
 
3
Our admissibility constraint (20) is equivalent to equation (2.a), page 7, [43], setting their \(\beta =0\) and considering that \(c_0\), \(\varvec{v}^1\), \(\varvec{v}^2\), and \(\varvec{q}\) are denoted by \(\tilde{\alpha }\), \(\dot{\varvec{u}}\), \(\varvec{u}_n\), \(\varvec{w}_p\) in our manuscript.
 
4
Note that in the appendix reported in [13] the third rank tensor \(v^{ij}_p\) is equivalent to our \(\mathbb {{\mathcal {A}}}\) and its gradient to our \({\mathbb {M}}\). However, the latter is always identified to \({\mathbb {LC}}\), although relationship (138) actually rigorously holds only when \({\mathbb {C}}\) is locally constant.
 
5
See Section 4.3.1, pages 24–25, [35], and the model (4.100-4.103) therein, which is in turn proved to be equivalent to Eqs. (54), (56), (70), (75) in [42]. In [35], the quantities \({\tilde{{\mathsf {K}}}}\), \({\tilde{{\mathsf {G}}}}\), \(p_p\), \(\varvec{v}_n\), \(\phi \varvec{v}_p\), \(|\varOmega _p|\), \(|\varGamma |\) are denoted by \({\mathsf {K}}\), \({\mathsf {E}}\), \(p_t\), \(\varvec{u}_n\), \(\varvec{u}_t\), \(|\varOmega _t|\), S, respectively. Both in [42] and [35], only specific averages are used, and they are denoted as we denote non-specific averages, i.e. \(\displaystyle \left\langle \,\bullet \,\right\rangle _k\).
 
Literatur
1.
Zurück zum Zitat Auriault JL, Boutin C, Geindreau C (2010) Homogenization of coupled phenomena in heterogenous media, vol 149. Wiley, Hoboken Auriault JL, Boutin C, Geindreau C (2010) Homogenization of coupled phenomena in heterogenous media, vol 149. Wiley, Hoboken
2.
Zurück zum Zitat Bai M, Meng F, Elsworth D, Abousleiman Y, Roegiers JC (1999) Numerical modelling of coupled flow and deformation in fractured rock specimens. Int J Numer Anal Methods Geomech 23(2):141–160CrossRefMATH Bai M, Meng F, Elsworth D, Abousleiman Y, Roegiers JC (1999) Numerical modelling of coupled flow and deformation in fractured rock specimens. Int J Numer Anal Methods Geomech 23(2):141–160CrossRefMATH
3.
Zurück zum Zitat Bakhvalov N, Panasenko G (1989) Homogenisation averaging processes in periodic media. Springer, BerlinCrossRefMATH Bakhvalov N, Panasenko G (1989) Homogenisation averaging processes in periodic media. Springer, BerlinCrossRefMATH
4.
Zurück zum Zitat Beavers GS, Joseph DD (1967) Boundary conditions at a naturally permeable wall. J Fluid Mech 30:197–207CrossRefADS Beavers GS, Joseph DD (1967) Boundary conditions at a naturally permeable wall. J Fluid Mech 30:197–207CrossRefADS
5.
Zurück zum Zitat Berryman JG (2005) Comparison of upscaling methods in poroelasticity and its generalizations. J Eng Mech 131(9):928–936CrossRef Berryman JG (2005) Comparison of upscaling methods in poroelasticity and its generalizations. J Eng Mech 131(9):928–936CrossRef
6.
8.
Zurück zum Zitat Biot M (1956) General solutions of the equations of elasticity and consolidation for a porous material. J Appl Mech 23(1):91–96MATHMathSciNet Biot M (1956) General solutions of the equations of elasticity and consolidation for a porous material. J Appl Mech 23(1):91–96MATHMathSciNet
9.
Zurück zum Zitat Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc Am 28(2):168–178CrossRefADSMathSciNet Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc Am 28(2):168–178CrossRefADSMathSciNet
11.
Zurück zum Zitat Bottaro A, Ansaldi T (2012) On the infusion of a therapeutic agent into a solid tumor modeled as a poroelastic medium. J Biomech Eng 134:1–6CrossRef Bottaro A, Ansaldi T (2012) On the infusion of a therapeutic agent into a solid tumor modeled as a poroelastic medium. J Biomech Eng 134:1–6CrossRef
13.
Zurück zum Zitat Burridge R, Keller J (1981) Poroelasticity equations derived from microstructure. J Acoust Soc Am 70:1140–1146CrossRefMATHADS Burridge R, Keller J (1981) Poroelasticity equations derived from microstructure. J Acoust Soc Am 70:1140–1146CrossRefMATHADS
14.
Zurück zum Zitat Coussy O (2011) Mechanics and physics of porous solids. Wiley, Hoboken Coussy O (2011) Mechanics and physics of porous solids. Wiley, Hoboken
15.
16.
Zurück zum Zitat Dalwadi MP, Griffiths IM, Bruna M (2015) Understanding how porosity gradients can make a better filter using homogenization theory. In: Proceedings of Royal Society A, vol 471, p 20150464 Dalwadi MP, Griffiths IM, Bruna M (2015) Understanding how porosity gradients can make a better filter using homogenization theory. In: Proceedings of Royal Society A, vol 471, p 20150464
17.
Zurück zum Zitat Detournay E, Cheng AD (2004) Fundamentals of poroelasticity. In: Fairhurst C (ed) Comprehensive rock engineering: principles, practice and projects, analysis and design method, vol II. Pergamon Press, Oxford, pp 113–171 Detournay E, Cheng AD (2004) Fundamentals of poroelasticity. In: Fairhurst C (ed) Comprehensive rock engineering: principles, practice and projects, analysis and design method, vol II. Pergamon Press, Oxford, pp 113–171
18.
Zurück zum Zitat Discacciati M, Quarteroni A (2009) Navier-stokes/darcy coupling: modeling, analysis, and numerical approximation. Rev Matem Complut 22(2):315–426MATHMathSciNet Discacciati M, Quarteroni A (2009) Navier-stokes/darcy coupling: modeling, analysis, and numerical approximation. Rev Matem Complut 22(2):315–426MATHMathSciNet
19.
Zurück zum Zitat Eshelby J (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond Ser A Math Phys Sci 241:376–396CrossRefMATHADSMathSciNet Eshelby J (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond Ser A Math Phys Sci 241:376–396CrossRefMATHADSMathSciNet
20.
Zurück zum Zitat Gurtin M, Fried E, Anand L (2010) The mechanics and thermodynamics of continua. Cambridge University Press, CambridgeCrossRef Gurtin M, Fried E, Anand L (2010) The mechanics and thermodynamics of continua. Cambridge University Press, CambridgeCrossRef
23.
Zurück zum Zitat Jain RK (1987) Transport of molecules across tumor vasculature. Cancer Metastasis Rev 6:559–594CrossRef Jain RK (1987) Transport of molecules across tumor vasculature. Cancer Metastasis Rev 6:559–594CrossRef
24.
Zurück zum Zitat Jain RK (1990) Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 50:814–819 Jain RK (1990) Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 50:814–819
25.
Zurück zum Zitat Jain RK, Baxter LT (1988) Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res 48:7022–7032 Jain RK, Baxter LT (1988) Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res 48:7022–7032
26.
Zurück zum Zitat Jones IP (1973) Low reynolds number flow past a porous spherical shell. Math Proc Camb Philos Soc 73:231–238CrossRefMATHADS Jones IP (1973) Low reynolds number flow past a porous spherical shell. Math Proc Camb Philos Soc 73:231–238CrossRefMATHADS
27.
Zurück zum Zitat Kedem O, Katchalsky A (1958) Thermodynamic of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta 27:229–246CrossRef Kedem O, Katchalsky A (1958) Thermodynamic of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta 27:229–246CrossRef
28.
Zurück zum Zitat Mascheroni P, Penta R (2016) The role of the microvascular network structure on diffusion and consumption of anti-cancer drugs. Int J Numer Methods Biomed Eng. doi:10.1002/cnm.2857 Mascheroni P, Penta R (2016) The role of the microvascular network structure on diffusion and consumption of anti-cancer drugs. Int J Numer Methods Biomed Eng. doi:10.​1002/​cnm.​2857
29.
Zurück zum Zitat Mei CC, Vernescu B (2010) Homogenization methods for multiscale mechanics. World Scientific, SingaporeCrossRefMATH Mei CC, Vernescu B (2010) Homogenization methods for multiscale mechanics. World Scientific, SingaporeCrossRefMATH
30.
Zurück zum Zitat Meirmanov A (2010) Double porosity models for liquid filtration in incompressible poroelastic media. Math Models Methods Appl Sci 20(04):635–659CrossRefMATHMathSciNet Meirmanov A (2010) Double porosity models for liquid filtration in incompressible poroelastic media. Math Models Methods Appl Sci 20(04):635–659CrossRefMATHMathSciNet
31.
Zurück zum Zitat Mikelić A, Wheeler MF (2013) Convergence of iterative coupling for coupled flow and geomechanics. Comput Geosci 17(3):455–461CrossRefMathSciNet Mikelić A, Wheeler MF (2013) Convergence of iterative coupling for coupled flow and geomechanics. Comput Geosci 17(3):455–461CrossRefMathSciNet
32.
Zurück zum Zitat Netti PA, Baxter LT, Boucher Y, Skalak R, Jain RK (1995) Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery. Cancer Res 55(22):5451–5458 Netti PA, Baxter LT, Boucher Y, Skalak R, Jain RK (1995) Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery. Cancer Res 55(22):5451–5458
33.
Zurück zum Zitat Papanicolau G, Bensoussan A, Lions JL (1978) Asymptotic analysis for periodic structures. Elsevier, Amsterdam Papanicolau G, Bensoussan A, Lions JL (1978) Asymptotic analysis for periodic structures. Elsevier, Amsterdam
34.
Zurück zum Zitat Penta R, Ambrosi D (2015) The role of the microvascular tortuosity in tumor transport phenomena. J Theor Biol 364:80–97CrossRefMathSciNet Penta R, Ambrosi D (2015) The role of the microvascular tortuosity in tumor transport phenomena. J Theor Biol 364:80–97CrossRefMathSciNet
35.
Zurück zum Zitat Penta R, Ambrosi D, Quarteroni A (2015) Multiscale homogenization for fluid and drug transport in vascularized malignant tissues. Math Models Methods Appl Sci 25(1):79–108CrossRefMATHMathSciNet Penta R, Ambrosi D, Quarteroni A (2015) Multiscale homogenization for fluid and drug transport in vascularized malignant tissues. Math Models Methods Appl Sci 25(1):79–108CrossRefMATHMathSciNet
36.
Zurück zum Zitat Penta R, Ambrosi D, Shipley RJ (2014) Effective governing equations for poroelastic growing media. Q J Mech Appl Math 67(1):69–91CrossRefMATHMathSciNet Penta R, Ambrosi D, Shipley RJ (2014) Effective governing equations for poroelastic growing media. Q J Mech Appl Math 67(1):69–91CrossRefMATHMathSciNet
37.
Zurück zum Zitat Penta R, Gerisch A (2016) Investigation of the potential of asymptotic homogenization for elastic composites via a three-dimensional computational study. Comput Vis Sci 17(4):185–201CrossRefMathSciNet Penta R, Gerisch A (2016) Investigation of the potential of asymptotic homogenization for elastic composites via a three-dimensional computational study. Comput Vis Sci 17(4):185–201CrossRefMathSciNet
38.
Zurück zum Zitat Penta R, Raum K, Grimal Q, Schrof S, Gerisch A (2016) Can a continuous mineral foam explain the stiffening of aged bone tissue? A micromechanical approach to mineral fusion in musculoskeletal tissues. Bioinspir Biomim 11(3):035004CrossRefADS Penta R, Raum K, Grimal Q, Schrof S, Gerisch A (2016) Can a continuous mineral foam explain the stiffening of aged bone tissue? A micromechanical approach to mineral fusion in musculoskeletal tissues. Bioinspir Biomim 11(3):035004CrossRefADS
40.
Zurück zum Zitat Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory. Lecture Notes in Physics. Springer, BerlinMATH Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory. Lecture Notes in Physics. Springer, BerlinMATH
41.
Zurück zum Zitat Sanchez-Palencia E (1983) Homogenization method for the study of composite media. Asymptotic analysis II. Lecture notes in mathematics. vol 985, pp 192–214 Sanchez-Palencia E (1983) Homogenization method for the study of composite media. Asymptotic analysis II. Lecture notes in mathematics. vol 985, pp 192–214
42.
Zurück zum Zitat Shipley RJ, Chapman J (2010) Multiscale modelling of fluid and drug transport in vascular tumors. Bull Math Biol 72:1464–1491CrossRefMATHMathSciNet Shipley RJ, Chapman J (2010) Multiscale modelling of fluid and drug transport in vascular tumors. Bull Math Biol 72:1464–1491CrossRefMATHMathSciNet
43.
Zurück zum Zitat Showalter RE (2005) Poroelastic filtration coupled to stokes flow. Lecture Notes in Pure and Applied Mathematics .vol 242, pp 229–237 Showalter RE (2005) Poroelastic filtration coupled to stokes flow. Lecture Notes in Pure and Applied Mathematics .vol 242, pp 229–237
44.
Zurück zum Zitat Taffetani M, de Falco C, Penta R, Ambrosi D, Ciarletta P (2014) Biomechanical modelling in nanomedicine: multiscale approaches and future challenges. Arch Appl Mech 84(9–11):1627–1645CrossRef Taffetani M, de Falco C, Penta R, Ambrosi D, Ciarletta P (2014) Biomechanical modelling in nanomedicine: multiscale approaches and future challenges. Arch Appl Mech 84(9–11):1627–1645CrossRef
45.
Zurück zum Zitat Wang H (2000) Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton University Press, Princeton Wang H (2000) Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton University Press, Princeton
46.
Zurück zum Zitat Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Ann Rev Mater Sci 28:271–298CrossRefADS Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Ann Rev Mater Sci 28:271–298CrossRefADS
Metadaten
Titel
Homogenized modeling for vascularized poroelastic materials
verfasst von
Raimondo Penta
José Merodio
Publikationsdatum
07.02.2017
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 14/2017
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-017-0625-1

Weitere Artikel der Ausgabe 14/2017

Meccanica 14/2017 Zur Ausgabe

Active Behavior in Soft Matter and Mechanobiology

Swelling and growth: a constitutive framework for active solids

Active behavior in soft matter and Mechanobiology

Swimming by switching

Active behavior in soft matter and Mechanobiology

The delamination of a growing elastic sheet with adhesion

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.