Skip to main content
Erschienen in: Journal of Materials Science 19/2016

01.10.2016 | Original Paper

Hopping conduction and LF noise in structures with Ge nanoclusters grown on oxidized Si(001)

verfasst von: V. S. Lysenko, Y. V. Gomeniuk, V. N. Kudina, N. P. Garbar, S. V. Kondratenko, Ye. Ye. Melnichuk, Y. N. Kozyrev

Erschienen in: Journal of Materials Science | Ausgabe 19/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Conductivity, capacitance, and the low-frequency noise in structures with Ge nanoclusters grown on oxidized Si(001) have been investigated for the temperature range of 120–290 K and frequencies from 1 kHz to 1 MHz in co-planar geometry. The Mott’s variable range hopping through quasi-band of localized states at the Fermi level of nanoclusters and their interfaces was found to be the dominant transport mechanism in the surface conductivity channel. The quasi-band width was found to be about 110 meV, while the middle is located at E v + 140 meV. The maximum of reduced conductivity and capacitance were observed under conditions when Fermi level is in the middle of this band. A significant increase of the 1/f noise level with decreasing temperature found for the structures studied was ascribed to accompany hopping transport of charge carriers within the quasi-band with a high density of localized states.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Masini G, Colace L, Assanto G (2002) Si-based optoelectronics for communications. Mater Sci Eng B 89:2–9CrossRef Masini G, Colace L, Assanto G (2002) Si-based optoelectronics for communications. Mater Sci Eng B 89:2–9CrossRef
2.
Zurück zum Zitat Tiwari S, Rana F, Chan K, Hanafi H, Chan W, Buchanan D (1995) Volatile and non-volatile memories in silicon with nano-crystal storage. IEEE Int. Electron Dev Meet 521-524 Tiwari S, Rana F, Chan K, Hanafi H, Chan W, Buchanan D (1995) Volatile and non-volatile memories in silicon with nano-crystal storage. IEEE Int. Electron Dev Meet 521-524
3.
Zurück zum Zitat Wu JH, Li PW (2007) Ge nanocrystal metal-oxide-semiconductor transistors with Ge nanocrystals formed by thermal oxidation of poly-Si0.88Ge0.12. Semicond Sci Technol 22:S89CrossRef Wu JH, Li PW (2007) Ge nanocrystal metal-oxide-semiconductor transistors with Ge nanocrystals formed by thermal oxidation of poly-Si0.88Ge0.12. Semicond Sci Technol 22:S89CrossRef
4.
Zurück zum Zitat Shklyaev AA, Ichikawa M (2001) Three-dimensional Si islands on Si(001) surfaces. Phys Rev B 65:045307CrossRef Shklyaev AA, Ichikawa M (2001) Three-dimensional Si islands on Si(001) surfaces. Phys Rev B 65:045307CrossRef
5.
Zurück zum Zitat Shklyaev AA, Shibata M, Ichikawa M (2000) High-density ultrasmall epitaxial Ge islands on Si(111) surfaces with a SiO2 coverage. Phys Rev B 62:1540–1543CrossRef Shklyaev AA, Shibata M, Ichikawa M (2000) High-density ultrasmall epitaxial Ge islands on Si(111) surfaces with a SiO2 coverage. Phys Rev B 62:1540–1543CrossRef
6.
Zurück zum Zitat Stepina NP, Koptev ES, Dvurechenskii AV, Nikiforov AI, Gerharz J, Moers J, Gruetzmacher D (2011) Giant mesoscopic photoconductance fluctuations in Ge/Si quantum dot system. Appl Phys Lett 98:142101CrossRef Stepina NP, Koptev ES, Dvurechenskii AV, Nikiforov AI, Gerharz J, Moers J, Gruetzmacher D (2011) Giant mesoscopic photoconductance fluctuations in Ge/Si quantum dot system. Appl Phys Lett 98:142101CrossRef
7.
Zurück zum Zitat Yakimov AI, Adkins CJ, Boucher R, Dvurechenskii AV, Nikiforov AI, Pchelyakov OP, Biskupski G (1999) Hopping conduction and field effect in Si modulation-doped structures with embedded Ge quantum dots. Phys Rev B 59:12598–12603CrossRef Yakimov AI, Adkins CJ, Boucher R, Dvurechenskii AV, Nikiforov AI, Pchelyakov OP, Biskupski G (1999) Hopping conduction and field effect in Si modulation-doped structures with embedded Ge quantum dots. Phys Rev B 59:12598–12603CrossRef
8.
Zurück zum Zitat Kul’bachinskii VA, Kytin VG, Lunin RA, Golikov AV, Malkina IG, Zvonkov BN, Saf’yanov YuN (1999) Photoluminescence and transport properties of multilayer InAs/GaAs structures with quantum dots. Semiconductors 33:318–322CrossRef Kul’bachinskii VA, Kytin VG, Lunin RA, Golikov AV, Malkina IG, Zvonkov BN, Saf’yanov YuN (1999) Photoluminescence and transport properties of multilayer InAs/GaAs structures with quantum dots. Semiconductors 33:318–322CrossRef
9.
Zurück zum Zitat Song HZ, Akahane K, Lan S, Xu HZ, Okada Y, Kawabe M (2001) In-plane photocurrent of self-assembled InxGa1-xAs/GaAs(311)B quantum dot arrays. Phys Rev B 64:085303CrossRef Song HZ, Akahane K, Lan S, Xu HZ, Okada Y, Kawabe M (2001) In-plane photocurrent of self-assembled InxGa1-xAs/GaAs(311)B quantum dot arrays. Phys Rev B 64:085303CrossRef
10.
Zurück zum Zitat Peibst R, de Sousa JS, Hofmann KR (2010) Determination of the Ge-nanocrystal/SiO2 matrix interface trap density from the small signal response of charge stored in the nanocrystals. Phys Rev B 82:195415CrossRef Peibst R, de Sousa JS, Hofmann KR (2010) Determination of the Ge-nanocrystal/SiO2 matrix interface trap density from the small signal response of charge stored in the nanocrystals. Phys Rev B 82:195415CrossRef
11.
Zurück zum Zitat Lysenko VS, Gomeniuk YV, Kondratenko SV, YeYe Melnichuk, Kozyrev YN, Teichert C (2014) Transport and photoelectric effects in structures with Ge and SiGe nanoclusters grown on oxidized Si (001). Adv Mater Res 854:11–19CrossRef Lysenko VS, Gomeniuk YV, Kondratenko SV, YeYe Melnichuk, Kozyrev YN, Teichert C (2014) Transport and photoelectric effects in structures with Ge and SiGe nanoclusters grown on oxidized Si (001). Adv Mater Res 854:11–19CrossRef
12.
Zurück zum Zitat Barski A, Derivaz M, Rouvière JL, Buttard D (2000) Epitaxial growth of germanium dots on Si(001) surface covered by a very thin silicon oxide layer. Appl Phys Lett 77:3541–3543CrossRef Barski A, Derivaz M, Rouvière JL, Buttard D (2000) Epitaxial growth of germanium dots on Si(001) surface covered by a very thin silicon oxide layer. Appl Phys Lett 77:3541–3543CrossRef
13.
Zurück zum Zitat Lysenko VS, Kondratenko SV, Kozyrev YN, Kladko VP, Gomeniuk YV, Melnichuk YY, Blanchard NB (2013) Surface reconstruction and optical absorption changes for Ge nanoclusters grown on chemically oxidized Si(100) surfaces. Semicond Sci Technol 28:085009CrossRef Lysenko VS, Kondratenko SV, Kozyrev YN, Kladko VP, Gomeniuk YV, Melnichuk YY, Blanchard NB (2013) Surface reconstruction and optical absorption changes for Ge nanoclusters grown on chemically oxidized Si(100) surfaces. Semicond Sci Technol 28:085009CrossRef
14.
Zurück zum Zitat Mott NF (1968) Conduction in glasses containing transition metal ions. J Non-Cryst Solids 1:1–17CrossRef Mott NF (1968) Conduction in glasses containing transition metal ions. J Non-Cryst Solids 1:1–17CrossRef
15.
Zurück zum Zitat Shklovskii BI, Efros AL (1984) Electronic Properties of Doped Semiconductors. Springer, BerlinCrossRef Shklovskii BI, Efros AL (1984) Electronic Properties of Doped Semiconductors. Springer, BerlinCrossRef
16.
Zurück zum Zitat Mott NF, Davis EA (1971) Electronic Processes in non-crystalline materials. Clarendon, Oxford Mott NF, Davis EA (1971) Electronic Processes in non-crystalline materials. Clarendon, Oxford
17.
Zurück zum Zitat Pollak M, Geballe TH (1961) Low-frequency conductivity due to hopping processes in silicon. Phys Rev 122:1742–1753CrossRef Pollak M, Geballe TH (1961) Low-frequency conductivity due to hopping processes in silicon. Phys Rev 122:1742–1753CrossRef
18.
Zurück zum Zitat Long AR (1982) Frequency dependent loss in amorphous semiconductors. Adv Phys 31:553–637CrossRef Long AR (1982) Frequency dependent loss in amorphous semiconductors. Adv Phys 31:553–637CrossRef
19.
Zurück zum Zitat Hunt A (1991) One-dimensional hopping conductivity calculations. Philos Mag B 64:327–334CrossRef Hunt A (1991) One-dimensional hopping conductivity calculations. Philos Mag B 64:327–334CrossRef
20.
Zurück zum Zitat Wang K, Chen H (2003) Shen WZ AC electrical properties of nanocrystalline silicon thin films. Physica B 336:369–378CrossRef Wang K, Chen H (2003) Shen WZ AC electrical properties of nanocrystalline silicon thin films. Physica B 336:369–378CrossRef
21.
Zurück zum Zitat Garbar NP, Kudina VN, Lysenko VS, Kondratenko SV, Kozyrev YuN (2014) Effect of Ge-nanoislands on the low-frequency noise in Si/SiOx/Ge structures. Adv Mater Res 854:21–27CrossRef Garbar NP, Kudina VN, Lysenko VS, Kondratenko SV, Kozyrev YuN (2014) Effect of Ge-nanoislands on the low-frequency noise in Si/SiOx/Ge structures. Adv Mater Res 854:21–27CrossRef
22.
Zurück zum Zitat Hooge FN (1994) 1/f noise sources, IEEE Trans. Electron Devices 41:1926–1935CrossRef Hooge FN (1994) 1/f noise sources, IEEE Trans. Electron Devices 41:1926–1935CrossRef
23.
Zurück zum Zitat McWhorter AL (1955) 1/f noise and related surface effects in germanium. MIT, Cambridge McWhorter AL (1955) 1/f noise and related surface effects in germanium. MIT, Cambridge
24.
Zurück zum Zitat Dutta P, Horn PM (1981) Low-frequency fluctuations in solids: 1/f noise. Rev Mod Phys 53:497–516CrossRef Dutta P, Horn PM (1981) Low-frequency fluctuations in solids: 1/f noise. Rev Mod Phys 53:497–516CrossRef
25.
Zurück zum Zitat Weissman MB (1988) 1/f noise and other slow, nonexponential kinetics in condensed matter. Rev Mod Phys 60:537–571CrossRef Weissman MB (1988) 1/f noise and other slow, nonexponential kinetics in condensed matter. Rev Mod Phys 60:537–571CrossRef
26.
Zurück zum Zitat McCammon D, Galeazzi M, Liu D et al (2002) 1/f noise and hot electron effects in variable range hopping conduction. Phys Status Solidi B 230:197–204CrossRef McCammon D, Galeazzi M, Liu D et al (2002) 1/f noise and hot electron effects in variable range hopping conduction. Phys Status Solidi B 230:197–204CrossRef
27.
Zurück zum Zitat Deville G, Leturcq R, L’Hote D et al (2006) 1/f noise in a dilute GaAs two-dimensional hole system in the insulating phase. Physica E 34:252–255CrossRef Deville G, Leturcq R, L’Hote D et al (2006) 1/f noise in a dilute GaAs two-dimensional hole system in the insulating phase. Physica E 34:252–255CrossRef
28.
Zurück zum Zitat Burin AL, Shklovskii BI, Kozub VI, Galperin YuM, Vinokur V (2008) Many electron theory of 1/f-noise in hopping conductivity. Phys Status Solid 5:800–808CrossRef Burin AL, Shklovskii BI, Kozub VI, Galperin YuM, Vinokur V (2008) Many electron theory of 1/f-noise in hopping conductivity. Phys Status Solid 5:800–808CrossRef
29.
Zurück zum Zitat Ando T, Fowler AB, Stern F (1982) Electronic properties of two-dimensional systems. Rev Mod Phys 54:437–672CrossRef Ando T, Fowler AB, Stern F (1982) Electronic properties of two-dimensional systems. Rev Mod Phys 54:437–672CrossRef
30.
Zurück zum Zitat Beyer R, Burghardt H, Borany J (2013) Germanium nanocrystals in SiO2: relevance of the defect state distribution at the Si-SiO2 interface. Phys Status Solidi C 10:607–610CrossRef Beyer R, Burghardt H, Borany J (2013) Germanium nanocrystals in SiO2: relevance of the defect state distribution at the Si-SiO2 interface. Phys Status Solidi C 10:607–610CrossRef
31.
Zurück zum Zitat Park Ji-Sang, Ryu Byungki, Moon Chang-Youn, Chang KJ (2010) Defects responsible for the hole gas in Ge/Si core-shell nanowires. Nano Lett 10:116–121CrossRef Park Ji-Sang, Ryu Byungki, Moon Chang-Youn, Chang KJ (2010) Defects responsible for the hole gas in Ge/Si core-shell nanowires. Nano Lett 10:116–121CrossRef
32.
Zurück zum Zitat Poindexter EH, Gerardi GJ, Rueckel ME, Caplan PJ, Johnson NM, Biegelsen DK (1984) Electronic traps and Pb centers at the Si/SiO2 interface: band-gap energy distribution. J Appl Phys 56:2844–2849CrossRef Poindexter EH, Gerardi GJ, Rueckel ME, Caplan PJ, Johnson NM, Biegelsen DK (1984) Electronic traps and Pb centers at the Si/SiO2 interface: band-gap energy distribution. J Appl Phys 56:2844–2849CrossRef
33.
Zurück zum Zitat Arkhipov VI, Emelianova EV, Adriaenssens GJ, Bässler H (2002) Equilibrium carrier mobility in disordered organic semiconductors. J Non-Cryst Solids 299–302:1047–1051CrossRef Arkhipov VI, Emelianova EV, Adriaenssens GJ, Bässler H (2002) Equilibrium carrier mobility in disordered organic semiconductors. J Non-Cryst Solids 299–302:1047–1051CrossRef
Metadaten
Titel
Hopping conduction and LF noise in structures with Ge nanoclusters grown on oxidized Si(001)
verfasst von
V. S. Lysenko
Y. V. Gomeniuk
V. N. Kudina
N. P. Garbar
S. V. Kondratenko
Ye. Ye. Melnichuk
Y. N. Kozyrev
Publikationsdatum
01.10.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0071-9

Weitere Artikel der Ausgabe 19/2016

Journal of Materials Science 19/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.