Skip to main content
Erschienen in: Journal of Computational Electronics 1/2019

21.11.2018

Hopping parameters for tunnel coupling in 2D materials

verfasst von: V. L. Katkov, D. A. Lobanov

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Using Bardeen’s approach and orbital wave functions obtained by the algorithm of Herman and Skillman, we calculated interatomic matrix elements for tunnel interaction between the atoms from the set of B, C, N, Si, P, S, Ti, V, Se, Mo, Te and W, which constitute many 2D materials. In a wide range of interatomic distances, these values are approximated by simple functions with a small set of parameters. The results are presented in reference tables. These results will be useful for describing different tunnel phenomena in low-dimensional materials using the tight-binding approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Binnig, G., Rohrer, H.: Scanning tunneling microscopy. IBM J. Res. Dev. 44, 279 (2000)CrossRef Binnig, G., Rohrer, H.: Scanning tunneling microscopy. IBM J. Res. Dev. 44, 279 (2000)CrossRef
2.
Zurück zum Zitat Binnig, G., Rohrer, H., Gerber, C., Weibel, E.: Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57 (1982)CrossRef Binnig, G., Rohrer, H., Gerber, C., Weibel, E.: Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57 (1982)CrossRef
3.
Zurück zum Zitat Binnig, G., Rohrer, H., Gerber, C., Weibel, E.: Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40, 178 (1982)CrossRef Binnig, G., Rohrer, H., Gerber, C., Weibel, E.: Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40, 178 (1982)CrossRef
4.
Zurück zum Zitat Hofer, W.A., Foster, A.S., Shluger, A.L.: Theories of scanning probe microscopes at the atomic scale. Rev. Mod. Phys. 75, 1287 (2003)CrossRef Hofer, W.A., Foster, A.S., Shluger, A.L.: Theories of scanning probe microscopes at the atomic scale. Rev. Mod. Phys. 75, 1287 (2003)CrossRef
5.
Zurück zum Zitat Alferov, Z.I.: The history and future of semiconductor heterostructures. Semiconductors 32, 1 (1998)CrossRef Alferov, Z.I.: The history and future of semiconductor heterostructures. Semiconductors 32, 1 (1998)CrossRef
6.
Zurück zum Zitat Geim, A.K., Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419 (2013)CrossRef Geim, A.K., Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419 (2013)CrossRef
7.
Zurück zum Zitat Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004)CrossRef Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004)CrossRef
8.
Zurück zum Zitat Pacilé, D., Meyer, J.C., Girit, C.O., Zettl, A.: The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92, 133107 (2008)CrossRef Pacilé, D., Meyer, J.C., Girit, C.O., Zettl, A.: The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92, 133107 (2008)CrossRef
9.
Zurück zum Zitat Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y.: Black phosphorus field-effect transistors. Nat. Nano 9, 372 (2014)CrossRef Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y.: Black phosphorus field-effect transistors. Nat. Nano 9, 372 (2014)CrossRef
10.
Zurück zum Zitat Koenig, S.P., Doganov, R.A., Schmidt, H., Castro Neto, A.H., Ozyilmaz, B.: Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014)CrossRef Koenig, S.P., Doganov, R.A., Schmidt, H., Castro Neto, A.H., Ozyilmaz, B.: Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014)CrossRef
11.
Zurück zum Zitat Low, T., Engel, M., Steiner, M., Avouris, P.: Origin of photoresponse in black phosphorus phototransistors. Phys. Rev. B 90, 081408 (2014)CrossRef Low, T., Engel, M., Steiner, M., Avouris, P.: Origin of photoresponse in black phosphorus phototransistors. Phys. Rev. B 90, 081408 (2014)CrossRef
12.
Zurück zum Zitat Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033 (2014)CrossRef Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033 (2014)CrossRef
13.
Zurück zum Zitat Lu, W., Nan, H., Hong, J., Chen, Y., Zhu, C., Liang, Z., Ma, X., Ni, Z., Jin, C., Zhang, Z.: Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 7, 853 (2014)CrossRef Lu, W., Nan, H., Hong, J., Chen, Y., Zhu, C., Liang, Z., Ma, X., Ni, Z., Jin, C., Zhang, Z.: Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 7, 853 (2014)CrossRef
14.
Zurück zum Zitat Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014)CrossRef Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014)CrossRef
15.
Zurück zum Zitat Lalmi, B., Oughaddou, H., Enriquez, H., Kara, A., Vizzini, S., Ealet, B., Aufray, B.: Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97, 223109 (2010)CrossRef Lalmi, B., Oughaddou, H., Enriquez, H., Kara, A., Vizzini, S., Ealet, B., Aufray, B.: Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97, 223109 (2010)CrossRef
16.
Zurück zum Zitat Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nano 7, 699 (2012)CrossRef Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nano 7, 699 (2012)CrossRef
17.
Zurück zum Zitat Slater, J.C., Koster, G.F.: Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498 (1954)CrossRefMATH Slater, J.C., Koster, G.F.: Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498 (1954)CrossRefMATH
18.
Zurück zum Zitat Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, T., Suhai, S., Seifert, G.: Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 58, 7260 (1998)CrossRef Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, T., Suhai, S., Seifert, G.: Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 58, 7260 (1998)CrossRef
19.
Zurück zum Zitat Khalili, K., Penazzi, G., Frauenheim, T.: The spectral adjustment in nanoscale transport combined with the density functional based tight binding method. Comput. Mater. Sci. 133, 14 (2017)CrossRef Khalili, K., Penazzi, G., Frauenheim, T.: The spectral adjustment in nanoscale transport combined with the density functional based tight binding method. Comput. Mater. Sci. 133, 14 (2017)CrossRef
20.
Zurück zum Zitat Berthod, C., Giamarchi, T.: Tunneling conductance and local density of states in tight-binding junctions. Phys. Rev. B 84, 155414 (2011)CrossRef Berthod, C., Giamarchi, T.: Tunneling conductance and local density of states in tight-binding junctions. Phys. Rev. B 84, 155414 (2011)CrossRef
21.
Zurück zum Zitat Trushkov, I., Iorsh, I.: Two-dimensional hyperbolic medium for electrons and photons based on the array of tunnel-coupled graphene nanoribbons. Phys. Rev. B 92, 045305 (2015)CrossRef Trushkov, I., Iorsh, I.: Two-dimensional hyperbolic medium for electrons and photons based on the array of tunnel-coupled graphene nanoribbons. Phys. Rev. B 92, 045305 (2015)CrossRef
22.
Zurück zum Zitat Hawke, L.G.D., Kalosakas, G., Simserides, C.: Electronic parameters for charge transfer along DNA. Eur. Phys. J. E 32, 291 (2010)CrossRef Hawke, L.G.D., Kalosakas, G., Simserides, C.: Electronic parameters for charge transfer along DNA. Eur. Phys. J. E 32, 291 (2010)CrossRef
23.
Zurück zum Zitat Isaeva, O.G., Katkov, V.L., Osipov, V.A.: DNA sequencing through graphene nanogap: a model of sequential electron transport. Eur. Phys. J. B 87, 272 (2014)CrossRef Isaeva, O.G., Katkov, V.L., Osipov, V.A.: DNA sequencing through graphene nanogap: a model of sequential electron transport. Eur. Phys. J. B 87, 272 (2014)CrossRef
24.
Zurück zum Zitat Katkov, V.L., Osipov, V.A.: Graphene-based tunnel junction. JETP Lett. 98, 689 (2014)CrossRef Katkov, V.L., Osipov, V.A.: Graphene-based tunnel junction. JETP Lett. 98, 689 (2014)CrossRef
25.
Zurück zum Zitat Katkov, V.L., Osipov, V.A.: Planar graphene tunnel field-effect transistor. Appl. Phys. Lett. 104, 053102 (2014)CrossRef Katkov, V.L., Osipov, V.A.: Planar graphene tunnel field-effect transistor. Appl. Phys. Lett. 104, 053102 (2014)CrossRef
26.
Zurück zum Zitat Glebov, A.A., Katkov, V.L., Osipov, V.A.: Effect of edge vacancies on performance of planar graphene tunnel field-effect transistor. EPL (Europhys. Lett.) 118, 27003 (2017)CrossRef Glebov, A.A., Katkov, V.L., Osipov, V.A.: Effect of edge vacancies on performance of planar graphene tunnel field-effect transistor. EPL (Europhys. Lett.) 118, 27003 (2017)CrossRef
27.
Zurück zum Zitat Katkov, V.L., Osipov, V.A.: Review Article: Tunneling-based graphene electronics: methods and examples. J. Vac. Sci. Technol. B 35, 050801 (2017)CrossRef Katkov, V.L., Osipov, V.A.: Review Article: Tunneling-based graphene electronics: methods and examples. J. Vac. Sci. Technol. B 35, 050801 (2017)CrossRef
28.
Zurück zum Zitat Meunier, V., Lambin, P.: Tight-binding computation of the STM image of carbon nanotubes. Phys. Rev. Lett. 81, 5588 (1998)CrossRef Meunier, V., Lambin, P.: Tight-binding computation of the STM image of carbon nanotubes. Phys. Rev. Lett. 81, 5588 (1998)CrossRef
29.
Zurück zum Zitat Settnes, M., Power, S.R., Petersen, D.H., Jauho, A.-P.: Phys. Rev. Lett. 112, 096801 (2014)CrossRef Settnes, M., Power, S.R., Petersen, D.H., Jauho, A.-P.: Phys. Rev. Lett. 112, 096801 (2014)CrossRef
30.
Zurück zum Zitat Mathon, J.: Tight-binding theory of tunneling giant magnetoresistance. Phys. Rev. B 56, 11810 (1997)CrossRef Mathon, J.: Tight-binding theory of tunneling giant magnetoresistance. Phys. Rev. B 56, 11810 (1997)CrossRef
31.
Zurück zum Zitat Wahiduzzaman, M., Oliveira, A.F., Philipsen, P., Zhechkov, L., van Lenthe, E., Witek, H.A., Heine, T.: DFTB parameters for the periodic table: part 1. Electronic structure. J. Chem. Theory Comput. 9, 4006 (2013)CrossRef Wahiduzzaman, M., Oliveira, A.F., Philipsen, P., Zhechkov, L., van Lenthe, E., Witek, H.A., Heine, T.: DFTB parameters for the periodic table: part 1. Electronic structure. J. Chem. Theory Comput. 9, 4006 (2013)CrossRef
32.
Zurück zum Zitat Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57 (1961)CrossRef Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57 (1961)CrossRef
33.
Zurück zum Zitat Paz, O., Brihuega, I., Gómez-Rodríguez, J.M., Soler, J.M.: Tip and surface determination from experiments and simulations of scanning tunneling microscopy and spectroscopy. Phys. Rev. Lett. 94, 056103 (2005)CrossRef Paz, O., Brihuega, I., Gómez-Rodríguez, J.M., Soler, J.M.: Tip and surface determination from experiments and simulations of scanning tunneling microscopy and spectroscopy. Phys. Rev. Lett. 94, 056103 (2005)CrossRef
34.
Zurück zum Zitat Martìn-Rodero, A., Flores, F., March, N.H.: Tight-binding theory of tunneling current with chemisorbed species. Phys. Rev. B 38, 10047 (1988)CrossRef Martìn-Rodero, A., Flores, F., March, N.H.: Tight-binding theory of tunneling current with chemisorbed species. Phys. Rev. B 38, 10047 (1988)CrossRef
35.
Zurück zum Zitat Herman, F., Skillman, S.: Atomic Structure Calculations. Prentice-Hall, Upper Saddle River (1963) Herman, F., Skillman, S.: Atomic Structure Calculations. Prentice-Hall, Upper Saddle River (1963)
36.
Zurück zum Zitat Slater, J.C.: Statistical exchange-correlation in the self-consistent field. Adv. Quantum Chem. 6, 1 (1972)CrossRef Slater, J.C.: Statistical exchange-correlation in the self-consistent field. Adv. Quantum Chem. 6, 1 (1972)CrossRef
37.
Zurück zum Zitat Zope, R.R., Dunlap, B.I.: Slater’s exchange parametersfor analytic and variationalcalculations. J. Chem. Theory Comput. 1, 1193 (2005)CrossRef Zope, R.R., Dunlap, B.I.: Slater’s exchange parametersfor analytic and variationalcalculations. J. Chem. Theory Comput. 1, 1193 (2005)CrossRef
38.
Zurück zum Zitat Schwarz, K.: Optimization of the statistical exchange parameter \(\alpha \) for the free atoms H through Nb. Phys. Rev. B 5, 2466 (1972)CrossRef Schwarz, K.: Optimization of the statistical exchange parameter \(\alpha \) for the free atoms H through Nb. Phys. Rev. B 5, 2466 (1972)CrossRef
39.
Zurück zum Zitat Schwarz, K.: Optimized statistical exchange parameters for atoms with higher Z. Theor. Chim. Acta 34, 225 (1974)CrossRef Schwarz, K.: Optimized statistical exchange parameters for atoms with higher Z. Theor. Chim. Acta 34, 225 (1974)CrossRef
41.
Zurück zum Zitat Ooi, N., Rairkar, A., Lindsley, L., Adams, J.B.: Electronic structure and bonding in hexagonal boron nitride. J. Phys. Condens. Matter 18, 97 (2006)CrossRef Ooi, N., Rairkar, A., Lindsley, L., Adams, J.B.: Electronic structure and bonding in hexagonal boron nitride. J. Phys. Condens. Matter 18, 97 (2006)CrossRef
42.
Zurück zum Zitat Li, P., Appelbaum, I.: Electrons and holes in phosphorene. Phys. Rev. B 90, 115439 (2014)CrossRef Li, P., Appelbaum, I.: Electrons and holes in phosphorene. Phys. Rev. B 90, 115439 (2014)CrossRef
43.
Zurück zum Zitat Cahangirov, S., Topsakal, M., Aktürk, E., Sahin, H., Ciraci, S.: Two-and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009)CrossRef Cahangirov, S., Topsakal, M., Aktürk, E., Sahin, H., Ciraci, S.: Two-and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009)CrossRef
44.
Zurück zum Zitat Amara, H., Latil, S., Meunier, V., Lambin, P., Charlier, J.-C.: Scanning tunneling microscopy fingerprints of point defects in graphene: a theoretical prediction. Phys. Rev. B 76, 115423 (2007)CrossRef Amara, H., Latil, S., Meunier, V., Lambin, P., Charlier, J.-C.: Scanning tunneling microscopy fingerprints of point defects in graphene: a theoretical prediction. Phys. Rev. B 76, 115423 (2007)CrossRef
Metadaten
Titel
Hopping parameters for tunnel coupling in 2D materials
verfasst von
V. L. Katkov
D. A. Lobanov
Publikationsdatum
21.11.2018
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2019
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-018-1281-y

Weitere Artikel der Ausgabe 1/2019

Journal of Computational Electronics 1/2019 Zur Ausgabe

Neuer Inhalt